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Abstract. The possibility of a heavy supersymmetric spectrum at the Minimal Supersymmetric Standard
Model is considered and the decoupling from the low energy electroweak scale is analyzed in detail. The
formal proof of decoupling of supersymmetric particles from low energy physics is stated in terms of the
effective action for the particles of the Standard Model that results by integrating out all the sparticles in
the limit where their masses are larger than the electroweak scale. The computation of the effective action
for the standard electroweak gauge bosons W ±, Z and γ is performed by integrating out all the squarks,
sleptons, charginos and neutralinos to one-loop. The Higgs sector is not considered in this paper. The large
sparticle masses limit is also analyzed in detail. Explicit analytical formulae for the two-point functions of
the electroweak gauge bosons to be valid in that limit are presented. Finally, the decoupling of sparticles
in the S, T and U parameters is studied analitically. A discussion on how the decoupling takes place in
terms of both the physical sparticle masses and the non-physical mass parameters as the µ-parameter and
the soft-breaking parameters is included.

1 Introduction

The Standard Model (SM) of particle physics provides a
highly successful description of all particle physics phe-
nomena occurring at present day accelerators. No experi-
mental deviations from the SM have yet been found, even
at LEP where the measurement of precision observables
provides a very sensitive test to possible deviations
through radiative corrections. Therefore, it is clear that
the SM is an extremely accurate effective low energy the-
ory at energy scales up to, at least, 100 GeV. In spite
of this success there is, however, the strong belief among
particle physicists that the SM cannot be the ultimate
theory but it must be the low energy effective theory of
some other more fundamental one which will probably in-
corporate gravitational interactions. Among the various
extensions of the SM, the Supersymmetric (SUSY) theo-
ries are the most claimed ones [1,2]. The motivations have
been principally theoretical. The idea of supersymmetry
relating fermions and bosons is certainly beautiful itself,
but one of the most used arguments in favour of super-
symmetry is that it guarantees the absence of quadratic
divergences in scalar self-energies which, in turn, keeps
the wanted stability of widely separated electroweak and
grand unified scales. In practice, the supersymmetric the-
ories are mostly built within same grand unification sce-
nario and have as a common prediction the existence of, at
least, one light elementary scalar Higgs boson with a mass
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close to the electroweak scale. At present, both aspects the
idea of grand unification and the existence of a light Higgs
boson are still waiting for experimental confirmation.

However, the greatest dilemma for supersymmetry is
the unknown mechanism for supersymmetry breaking.
Since no supersymmetric partners of the known particles
have yet been observed, one must not only explain why su-
persymmetry is broken, but also why it is broken in such
a way that all the supersymmetric partners are heavier
than the known particles. The present experimental lim-
its on the sparticle masses [3] indicate that supersymmetry
must be indeed strongly broken. In practice, when build-
ing a supersymmetric theory for low energy physics one
typically avoids the issue of the exact mechanism of su-
persymmetry breaking and parametrizes this phenomenon
by introducing a set of supersymmetry breaking parame-
ters which characterize the scale of the sparticle masses.
These explicit SUSY breaking terms are required, in ad-
dition, to be of soft type, meaning that no new quadratic
divergences are generated in the broken SUSY theory [4].
In other to keep the wanted shielding of the electroweak
scale against potentially large corrections from the grand
unified scale, at least at a phenomenologically acceptable
level, these soft SUSY breaking mass parameters shouldn’t
be larger than say O(1TeV ). This condition translates into
a restriction on the largest allowed mass splitting between
the known particles and their superpartners of this same
order of magnitude and one concludes that the supersym-
metric particles cannot be heavier than say O(1TeV ). The
simplest low energy supersymmetric model that includes
these soft SUSY breaking terms is the Minimal Supersym-
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metric Standard Model (MSSM) [5], which is the one we
have chosen to work with in this paper.

One interesting aspect that arises in these softly bro-
ken SUSY theories, and in particular in the MSSM, is the
question of decoupling of heavy sparticles from the low
energy SM and how does it really occurs if it occurs at
all. This is the main subject of the present paper. It is
a common belief that when the spectrum of supersym-
metric particles is considered much heavier than the low
energy electroweak scale they decouple from the low en-
ergy physics, even at the quantum level, and the resulting
low energy effective theory is the SM itself. It is true that
there are indications that this will happen, but a rigor-
ous proof of decoupling is still lacking. On one hand there
are numerical studies of observables that measure elec-
troweak radiative corrections, like ∆r and ∆ρ [6], or the
S, T and U parameters [7] as well as in the Z boson, top
quark and Higgs decays [8], which indicate that the one
loop corrections from supersymmetric particles decrease
up to negligible values in the limit of very heavy spar-
ticle masses. On the other hand there are some analyti-
cal studies, in certain asymptotic limits, of these and re-
lated observables [6]–[10], as well as some computations of
the effective potential for the scalar sector [12], where one
of the mass parameters like the so-called µ-parameter or
the soft-SUSY breaking parameters are pushed to infinity.
They also indicate some kind of decoupling but they are
not completely general since they mostly assume, for sim-
plicity, the restrictive hypothesis of universality of the soft
SUSY breaking parameters. Besides, one must be aware
that not all these asymptotic limits in terms of the mass
scale parameters of the MSSM lead to a complete heavy
SUSY spectra. In order to study the true decoupling, one
must be careful in taking the proper asymptotic limits
such that all the sparticles, and not just some of them,
are got heavier than their superpartners. In other words,
the choices of SUSY parameters that lead to some heavy
and some light SUSY particles are not the proper ones
to study the decoupling hypothesis, since the presence of
new light spectra at low energies is by itself contradictory
with the idea of decoupling. Therefore to explore the de-
coupling phenomenon it is more convenient to study the
asymptotic behaviour of the theory in the large sparticle
physical masses limit themselves rather than in the large
MSSM mass parameters limit. In this spirit there are some
works which deal with the Higgs sector of the MSSM and
study the consequences of taking one of the Higgs parti-
cles infinitely heavy. In particular, when the mass of the
pseudoscalar boson Ao is pushed to infinity it is proved
in [11] that, up to one loop level, all the effects of the
heavy Higgs particles decouple from the electroweak preci-
sion observables. More specifically, in this limit four of the
Higgs particles, H±, Ho and Ao become infinitely heavy
and the fifth one, ho, remains close to the electroweak
scale. The unique trace of the SUSY Higgs sector that is
left to low energies is the unavoidable presence of the light
Higgs particle ho itself which turns out to be, in the above
limit, indistinguishable from the Higgs particle of the SM.
In this sense, it is concluded in [11] that there is indeed

decoupling in the Higgs sector of the MSSM. Notice, how-
ever, that this behaviour is generic of the MSSM, but in
more extended Higgs sectors and in non-supersymmetric
models with two Higgs doublets it is known that the de-
coupling of the heavy Higgs particles may not occur [13].

A formal proof of decoupling must be driven, however,
along the lines stated in the famous Decoupling Theorem
of Appelquist and Carazzone [14]. The theorem states that
under certain conditions in a given Quantum Field Theory
with light and heavy particles, if the heavy particles are
integrated out to all orders in perturbation theory, the re-
maining effective action to be valid at energies much lower
that the heavy particle masses does not show any trace of
these heavy particles. In that case they are said to decou-
ple from the low energy theory. More specifically, all the
quantum effects of the heavy particles that are left in the
effective action can be either absorbed into a redefinition
of the parameters of the original theory or wave function
renormalization referring to the light fields, or they are
suppressed by inverse powers of the heavy masses and,
therefore, vanish in the infinite mass limit. Among the
conditions on the starting field theory to be sure that the
theorem holds are the renormalizability and the absence
of spontaneous symmetry breaking and chiral fermions.
Examples where the Decoupling Theorem does not hold
are well known. Particularly interesting are the cases of
the Higgs particle and the top quark in the SM which are
known not to decouple from low energy physics [16]. For
instance, by integrating out the top quark at one loop one
finds new contributions in the effective action which do not
vanish in the infinite top mass limit [17]. The same occurs
when integrating out the Higgs particle at one-loop. [18]
This can also be seen in the observable ∆ρ where the dom-
inant contribution from the top quark loops in the large
top mass limit goes quadratically with the top mass and
the dominant contribution from the Higgs particle loops
in the large Higgs mass limit goes logarithmically with the
Higgs mass. In these examples one understands the depar-
ture from the Decoupling Theorem because the SM is a
gauge theory with both spontaneous symmetry breaking
and chiral fermions [19].

The question whether the Decoupling Theorem applies
or not in the case of heavy sparticles in the MSSM is
not obvious at all, in our opinion. The MSSM is a model
which incorporates the SM particle content, the SM gauge
interactions and it is built such that the wanted sponta-
neous breaking pattern, SU(2)L ×U(1)Y → U(1)em, takes
place as in the Electroweak Theory. Even more, the soft-
SUSY breaking terms are required not just to generate the
needed SUSY particle masses but in addition to allow for
this spontaneous electroweak symmetry breaking [20]. In
few words, the MSSM is a gauge theory, as the SM, with
spontaneous symmetry breaking and chiral fermions and
therefore, the direct application of the Decoupling Theo-
rem should, in the principle, be questioned.

In our opinion, a formal proof of decoupling must in-
volve the explicit computation of the effective action by
integrating out one by one all the sparticles in the MSSM
to all orders in perturbation theory, and by considering the
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heavy sparticle masses limit. The proof will be conclusive
if the remaining effective action, to be valid at energies
much lower than the SUSY particle masses, turns out to
be that of the SM with all the SUSY effects being absorbed
into a redefinition of the SM parameters or else they are
suppressed by inverse powers of the SUSY particle masses
and vanish in the infinite masses limit.

In the present paper we give a first step in this di-
rection and compute the two-point functions part of the
effective action which results by integrating out all the
SUSY particles of the MSSM, except the Higgs sector,
at the one loop level. The integration of the Higgs sec-
tor presents interesting features by itself and we have pre-
ferred to consider it separately in a forthcoming work [21].
Of course, the complete proof of decoupling must involve
the computation of all the n-point Green functions. The
part of the effective action we have chosen to start with
is the one for the electroweak gauge bosons, W±, Z and
γ and, in particular, we have derived here the two point
functions. The three and four point functions with exter-
nal W±, Z and γ will be analized in a different work [22].
From the two-point functions we will derive, in addition,
the contributions from the SUSY particles to the S, T and
U parameters in the large SUSY masses limit. From these
analytical expressions we will be able to conclude how
the decoupling really occurs in these parameters. In or-
der to keep our computation of the heavy SUSY particle
quantum effects in a general form we have chosen to work
with the masses themselves. They are the proper parame-
ters of the large mass expansions instead of another more
model dependent choices as the µ-parameter or the soft-
SUSY-breaking parameters. We have considered the phys-
ically plausible situation where all the sparticle masses are
large as compared to the electroweak scale but they are
allowed, in principle, to be different from each other. We
will explore the interesting question of to what extent the
usual hypothesis of SUSY masses being generated by soft-
SUSY- breaking terms and the universality of the mass
parameters do or do not play a relevant role in getting de-
coupling. In fact, we will show in this paper, that the basic
requirement of SU(2)L × U(1)Y gauge invariance on the
SUSY breaking terms is sufficient to obtain decoupling in
the MSSM.

Finally, we have dedicated special attention and have
been very careful in evaluating analytically the large SUSY
masses limit of the Green functions. For this purpose,
we have applied the so-called m-Theorem [23] which pro-
vides a rigorous technique to compute Feynman integrals
with both large and small masses in the asymptotic limit
m̃i → ∞ for the large masses.

The paper is organized as follows: The second section
contains a short review of the MSSM and the supersym-
metric spectra and fixes the notation. The large sparticle
masses limit is described in section three. A discussion on
how to get large mass values for all the squarks, sleptons,
neutralinos and charginos in the MSSM is also included.
The fourth section is devoted to the computation of the
effective action for the electroweak gauge bosons W±, Z
and γ in the MSSM that results by integrating out, in

the path integral, squarks, sleptons, charginos and neu-
tralinos to one-loop. The exact results to one-loop for the
two-point functions of the electroweak gauge bosons are
presented in the fifth section. A discussion on the applica-
tion of the m-Theorem and the analytical results for the
self-energies of the electroweak gauge bosons in the large
SUSY masses limit are also included and commented in
this section. The decoupling of heavy sparticles in the S, T
and U parameters is analyzed in section six. Explicit for-
mulae for these parameters in the large SUSY masses limit
as well as a discussion on these results are also presented
in this section. The conclusions are summarized in section
seven. Appendix A contains the exact results to one-loop
of the self-energies, ΣXY , and the part of the two-point
functions that is proportional to kµkν , RXY . The evalua-
tion of the relevant Feynman integrals in the large masses
limit and the application of the m-Theorem are performed
in Appendix B. The asymptotic results in the above limit
for the transverse and longitudinal parts of the two-point
functions, ΣXY

T and ΣXY
L , are collected in Appendix C.

2 Some remarks on the MSSM

The Minimal Supersymmetric extension of the Standard
Model consists of taking the Standard Model of electro-
weak and strong interactions as it is known today, in-
cluding the as yet undiscovered Higgs boson particle, and
adding the corresponding supersymmetric partners [2,5].

The supersymmetric partners of the quarks and lep-
tons are the spin-zero squarks and sleptons. For a given
fermion f , there are two supersymmetric partners f̃L and
f̃R which are the scalar partners of the corresponding left
and right-handed fermions. Correspondingly, in the case
of sneutrinos there is no ν̃R. For simplicity we shall ignore
intergenerational mixing.

The supersymmetric partners of the gauge bosons are
the spin-one-half fermions called gauginos. The partners
of the gluon gµ, and the four weak bosons W a

µ (a=1,2,3),
Bµ are, correspondingly, the gluino g̃, the winos W̃ a and
the bino B̃.

In addition, the MSSM must possess two complex
scalar Higgs doublets H1, H2 in order to give masses to
down and up type fermions in a manner consistent with su-
persymmetry. The corresponding fermionic superpartners
are the Higgsinos H̃1, H̃2 which are also needed in pairs,
in order to avoid gauge anomalies. Supersymmetry, on the
other hand, imposes strong constraints on the form of the
Higgs potential. In particular, the quartic self couplings
of the Higgs fields are fixed in terms of the SU(2) × U(1)
gauge couplings and, therefore, the Higgs sector of the
MSSM is always weakly interacting.

The MSSM Lagrangian consists of two parts, a super-
symmetry-conserving Lagrangian and a supersymmetry-
breaking Lagrangian:

LMSSM = LSUSY + Lbreak
SUSY (1)
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Usually LMSSM is required to contain no interaction
terms of higher dimensions than 4 so that the theory is
renormalizable.

LSUSY contains the SM Lagrangian for the gauge
bosons and fermions and the corresponding supersym-
metrized Lagrangian for the gauginos and sfermions. It
also includes all possible renormalizable interactions
among sparticles themselves and among particles and spar-
ticles which are compatible with SU(3)c×SU(2)L×U(1)Y
gauge invariance and with supersymmetry. In addition,
there are the Lagrangian of the Higgs sector and the cor-
responding supersymmetrized Lagrangian for the Higgsino
sector. This Higgs/Higgsino part includes the self-interac-
tion terms and also the interactions with the other sectors.
In particular it contains the Yukawa interactions with the
standard fermions and the supersymmetric Higgs poten-
tial:

V SUSY
Higgs = |µ|2 (|H1|2 + |H2|2

)
(2)

+
1
8
(g2 + g′2)

(|H1|2 − |H2|2
)2

+
1
2
g2|H∗

1H2|2

The supersymmetry-conserving Lagrangian, LSUSY, is
completely general and model-independent since it is
based just in SU(3)c × SU(2)L × U(1)Y gauge symmetry,
renormalizability and supersymmetry. The parameters of
LSUSY can be summarized as follows:

– the gauge couplings gs, g and g′ corresponding to the
SM gauge group SU(3)c×SU(2)L×U(1)Y respectively,

– the Higgs Yukawa couplings λe, λu and λd (which are
3 × 3 matrices in flavour space), and

– the supersymmetry-conserving mass parameter µ.

Concerning the SUSY-breaking part, Lbreak
SUSY, it is not

of a general form but its detailed form and the involved
parameters depend on the particular mechanism that is
chosen in order to produce the SUSY breaking. However,
we are forced to introduce some kind of explicit SUSY
breaking at low energies since no supersymmetric partners
of the known particles have been observed.

In order to study the decoupling of SUSY particles
we would like to consider this term in the most model
independent way as possible. For this purpose, the mini-
mal requirements that Lbreak

SUSY must fulfil are: 1) SU(3)c ×
SU(2)L×U(1)Y gauge invariance, and 2) it must transmit
masses to all the supersymmetric particles in a way that
these result being considerably heavier than their stan-
dard partners. This last point is needed since we wish to
study the consequences at low energies of having a gap
between the SUSY spectra and the SM spectra.

Here we shall adopt the low-energy point of view in
which one skirts the issue of the exact mechanism of SUSY
breaking, and parametrizes one’s ignorance by introduc-
ing general mass-SUSY-breaking parameters that give the
scale of the masses of the SUSY particles without inquir-
ing into its origins. Usually, these explicit SUSY breaking
terms are required, in addition to be of soft type, mean-
ing that no new quadratic divergences are generated by
the explicitly broken SUSY theory. These soft breaking
terms were classified by Girardello and Grisaru [4] and are

of four types: gaugino Majorana mass terms, scalar mass
terms, scalar-scalar-scalar trilinear interaction terms, and
scalar-scalar bilinear interaction terms.

In the case of the MSSM the set of all possible soft
terms that respect SU(3)c × SU(2)L × U(1)Y gauge in-
variance are listed below:

Vsoft = m2
1|H1|2 + m2

2|H2|2 − m2
12

(
εijH

i
1H

j
2 + h.c.

)
+M2

Q̃

[
t̃∗Lt̃L + b̃∗

Lb̃L

]
+ M2

Ũ
t̃∗Rt̃R + M2

D̃
b̃∗
Rb̃R

+M2
L̃

[ν̃∗
Lν̃L + τ̃∗

Lτ̃L] + M2
Ẽ

τ̃∗
Rτ̃R

+
g√

2mW

εij

[
mτAτ

cos β
Hi

1 l̃
j
Lτ̃∗

R

+
mbAb

cos β
Hi

1q̃
j
Lb̃∗

R − mtAt

sinβ
Hi

2q̃
j
Lt̃∗R

]
+

1
2

[
M3¯̃gg̃ + M2

¯̃W
a
W̃ a + M1

¯̃BB̃
]

(3)

where,

l̃L ≡
(

ν̃L

τ̃L

)
, q̃L ≡

(
t̃L
b̃L

)
, (4)

εij (i,j=1,2) is the antisymmetric tensor to combine two
SU(2)L doublets (ε12 = 1) and the third generation no-
tation is used. The generation labels that are omitted for
brevity in this formula must be assumed.

The parameters of Vsoft can be summarized as follows:

– three scalar Higgs mass parameters m2
1, m2

2, and m2
12,

with m2
12 ≡ Bµ where µ is the mass parameter intro-

duced in (2) and B is a soft breaking parameter. These
can be re-expressed in terms of the two Higgs vacuum
expectation values, v1 and v2, and one physical Higgs
mass. Here, v1 (v2) is the vacuum expectation value
of the Higgs field which couples exclusively to down-
type (up-type) quarks and leptons. Since v2

1 + v2
2 =

(246GeV)2 is fixed by the W mass, we are left with
just two independent parameters in the Higgs sector.
These are usually chosen to be tanβ = v2/v1 and the
mass of the pseudoscalar m2

A0 = m2
12(tanβ + cot β),

– scalar masses for the squarks and sleptons of each gen-
eration: MQ̃, MŨ , MD̃, ML̃ and MẼ ,

– the trilinear soft breaking parameters for sleptons and
squarks of each generation Ar, At and Ab, and finally,

– gaugino Majorana masses M3, M2 and M1 associated
with the SU(3)c, SU(2)L and U(1)Y subgroups of the
SM respectively.

At this point we would like to make a short comment
that we think is relevant for the discussion about decou-
pling which will be presented in this paper. Notice that
the mass terms for gauginos and scalar particles above are
the unique possible explicit mass terms that are compati-
ble with SU(3)c × SU(2)L × U(1)Y gauge invariance. For
instance, we have chosen not to put different mass terms
for the two members of a scalar SU(2)L doublet, and we
have not included Dirac fermion mass terms. Any of these
two types of terms would have broken the weak isospin
symmetry and consequently the SU(2)L gauge symmetry
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of the Lagrangian. Thus, the above mass terms are com-
pletely general and could have been introduced without
mentioning the soft breaking requirement, but just the
SU(3)c ×SU(2)L ×U(1)Y gauge invariance. In the follow-
ing we will refer to these general terms simply as SUSY
breaking mass terms. On the other hand, it is known that
the SUSY breaking part of the Lagrangian is needed in
order to incorporate the wanted spontaneous breaking of
SU(2)L × U(1)Y into U(1)em. It is not possible to break
spontaneously the SU(2)L×U(1)Y symmetry if the theory
has an exact supersymmetry. The reason is that the super-
symmetric Higgs potential in (2) is definite positive and its
minimum is at the symmetric configuration H1 = H2 = 0.
Once the SUSY-breaking Higgs mass parameters, m2

1, m2
2

and m2
12, are included in the Higgs potential it reads:

VHiggs = m2
1H |H1|2 + m2

2H |H2|2 − m2
12

(
εijH

i
1H

j
2 + h.c.

)
+

1
8
(g2 + g′2)

(|H1|2 − |H2|2
)2

+
1
2
g2|H∗

1H2|2 (5)

where m2
iH ≡ |µ|2 + m2

i (i=1,2), and the real parameters
m2

i can be either positive or negative, therefore allowing
VHiggs to develop non-trivial vacua. The parameter region
in which SU(2)L × U(1)Y breaks down to U(1)em at tree
level is:
m2

1H + m2
2H ≥ 2 |m2

12| (required for stability of VHiggs)
|m2

12|2 > m2
1Hm2

2H (required for SU(2)L × U(1)Y break-
ing).

We will proceed on the assumption that these condi-
tions are satisfied.

In the following we consider the mass eigenstates of
the MSSM. Any set of particles of a given spin, baryon
number, lepton number and the same SU(3)c × U(1)em
quantum numbers can mix. Therefore, in principle, there
can be mixing in all the sectors of the MSSM and one must
diagonalize mass matrices to obtain the mass eigenstates
and the corresponding eigenvalues [2,5,24]. We consider
here all the sectors, except the Higgs sector that we prefer
to analyze elsewhere [21].

2.1 Squarks

One must diagonalize 6× 6 matrices corresponding to the
weak eigenstate basis {q̃iL

, q̃iR
} where i = 1, 2, 3 are the

generation labels. We will ignore mixing between sfermions
of different generations to avoid unacceptable large flavor
changing neutral currents and give here the 2 × 2 matrix
corresponding to the one generation case. As above, we
choose to use the notation of the third family. The mixing
mass matrices for the stop and sbottom squarks in the
(t̃L, t̃R) and (b̃L, b̃R) bases respectively are as follows:

M̂2
t̃ =

(
L ε
ε R .

)
, M̂2

b̃
=
(

L′ ε′
ε′ R′ .

)
, (6)

Notice that these are generic matrices with, in principle,
unconstrained and unrelated matrix elements. The only

constraint comes from SU(2)L × U(1)Y gauge invariance
which imposes the equality of the explicit breaking t̃∗Lt̃L

and b̃∗
Lb̃L mass terms. Thus, if the SUSY breaking is just

the explicit one, one has L = L′. This equality can be
distorted by mass terms whose origin is not explicit SUSY
breaking but spontaneous breaking of the SU(2)L×U(1)Y
symmetry. In the large SUSY masses limit that we are
interested in, L and L′ being of the order of (1TeV )2, this
distortion is relatively small since it goes as (m2

t − m2
b)

and/or it is proportional to m2
Z .

We give here their specific expressions for completeness
but we will keep the generic form, (6), through most of this
paper:

L = M2
Q̃ + m2

t + m2
Z(

1
2

− Qts
2
W ) cos 2β ,

R = M2
Ũ + m2

t + m2
ZQts

2
W cos 2β ,

ε = mt(At − µ cot β) ,

L′ = M2
Q̃ + m2

b − m2
Z(

1
2

+ Qbs
2
W ) cos 2β ,

R′ = M2
D̃ + m2

b + m2
ZQbs

2
W cos 2β ,

ε′ = mb(Ab − µ tanβ) , (7)

where Qt = 2/3, Qb = −1/3, s2
W ≡ sin2θW and tanβ ≡

v2/v1.
The mass eigenstates are denoted by t̃1, t̃2, b̃1, b̃2 and

are related to the weak eigenstates t̃L, t̃R, b̃L, b̃R by orthog-
onal matrices:(

t̃L

t̃R

)
= Rt

(
t̃1
t̃2

)
,

(
b̃L

b̃R

)
= Rb

(
b̃1

b̃2

)
. (8)

Rt =
(

ct −st

st ct

)
, Rb =

(
cb −sb

sb cb

)
. (9)

where cq ≡ cos φq,sq ≡ sinφq, q = t, b.
The corresponding squared-mass eigenvalues and the

mixing angles are given in terms of the generic matrix
elements as follows:

m̃2
t1,2

=
1
2
(L + R) ± 1

2
[
(L − R)2 + 4ε2] 1

2 ,

m̃2
b1,2

=
1
2
(L′ + R′) ± 1

2

[
(L′ − R′)2 + 4ε′2

] 1
2

, (10)

tan 2φt =
2ε

L − R
; tan 2φb =

2ε′

L′ − R′ . (11)

2.2 Sleptons

Similar formulae hold for the sleptons sector but replacing
t̃L → ν̃, t̃R → 0, b̃L → τ̃L, b̃R → τ̃R and the corresponding
changes in the rotation matrices Rν and Rτ which relate
the weak eigenstates (ν̃), (τ̃L, τ̃R) with the mass eigen-
states (ν̃), (τ̃1, τ̃2), respectively:

Rν =
(

1 0
0 1

)
, Rτ =

(
cτ −sτ

sτ cτ

)
. (12)



318 A. Dobado et al.: Decoupling of supersymmetric particles

The mass squared eigenvalues are m̃2
ν , m̃2

τ1
, m̃2

τ2
respec-

tively. The specific formulae (7) for the mass matrix ele-
ments must also be correspondingly replaced:

L → M2
L̃

+ 1
2m2

Z cos 2β , R → 0 , ε → 0 ,

L′ → M2
L̃

+ m2
τ − m2

Z( 1
2 − s2

W ) cos 2β ,

R′ → M2
Ẽ

+ m2
τ − m2

Zs2
W cos 2β ,

ε′ → mτ(Aτ − µ tanβ) .

(13)

From the above formulae (7) and (13), we see that the
f̃L − f̃R mixing is unimportant for most of the sfermions
except for the stop. In the case tan β � 1, the mixing in
the sbottom sector may also be non-negligible.

2.3 Charginos

The charged gauginos, W̃±, and the charged Higgsinos,
H̃±, can mix; the resulting mass eigenstates are the chargi-
nos. The 4-component Dirac fermions that represent these
two charginos are denoted here by χ̃+

1 and χ̃+
2 . The mass

matrix in the (W̃+, H̃+) basis can be written generically
as:

X =
(

M2 ε1
ε2 µ

)
. (14)

As in the case of squarks and sleptons there are three
types of contributions. There are contributions to the di-
agonal elements that come from explicit SUSY break-
ing, namely the Majorana mass M2, and contributions
that preserve SUSY, namely, the µ−term. Both diago-
nal terms preserve SU(2)L × U(1)Y invariance. The off-
diagonal terms come from the spontaneous breaking of
the SU(2)L × U(1)Y symmetry. More specifically, when
the Higgs field in the SUSY invariant interaction terms
with a gaugino and a Higgsino is replaced by its vev, it
gives rise to the following mixing entries,

ε1 =
√

2mW sinβ , ε2 =
√

2mW cos β . (15)

Notice that X is not symmetric unless tan β = 1.
Therefore, two different unitary 2 × 2 matrices U and W
are required to diagonalize the chargino mass matrix:

M̃+ = diag(M̃+
1 , M̃+

2 ) = U∗XW−1 . (16)

In principle, the diagonal elements can be either positive
or negative. We choose M2 to be positive and µ can be
either positive or negative. The physical chargino masses,
|M̃+

1 |, |M̃+
2 |, are defined to be positive.

In case of negative eigenvalues we follow the procedure
of the second paper in [2]. We define a new matrix V such
that,

U∗XV −1 = diag(|M̃+
1 |, |M̃+

2 |) , (17)

and express all the interactions in terms of U and V . V
can be trivially obtained from W by changing all the signs
in the file corresponding to the negative eigenvalue, i.e,

Vkl = ηkWkl (no sum over k) where ηk is the sign of the
eigenvalue M̃+

k (k, l = 1, 2).
The corresponding squared mass eigenvalues are:

M̃+2
1,2 =

1
2
(M2

2 + µ2 + 2m2
W )

±1
2

[
(M2 + µ)2[(M2 − µ)2 + 4m2

W ]
] 1

2
(18)

Notice that to reach the large SUSY masses limit that
we are interested in, it is necessary to consider the mass
parameters in the range M2, µ � mW and therefore, to
a very good approximation, the off diagonal elements of
X in (14) are negligible as compared to the diagonal ele-
ments. The mixing is small and χ̃+

1 will be predominantly
gaugino with a mass close to M2, whereas χ̃+

2 will be pre-
dominantly Higgsino with a mass close to |µ|. In this case,

U = W =
(

1 0
0 1

)
, (19)

and if µ ≥ 0 or µ < 0 V will be respectively:

V =
(

1 0
0 1

)
, or V =

(
1 0
0 −1

)
. (20)

The corrections to these matrices are suppressed by pow-
ers of (mW /M) where M is the largest of M2 and µ.

2.4 Neutralinos

The neutral gauginos B̃ and W̃3 and the neutral Hig-
gsinos H̃0

1, H̃0
2 can mix; the resulting mass eigenstates

are the neutralinos. The 4-component Majorana fermions
which represent these 4 neutralinos are denoted here by
χ̃0

1, χ̃
0
2, χ̃

0
3 and χ̃0

4, following the standard notation given
in [2].

The mass matrix in the (B̃, W̃3, H̃
0
1, H̃

0
2) basis can be

written generically as:

Y =

M1 0 ε′
1 ε′

2

0 M2 ε′
3 ε′

4

ε′
1 ε′

3 0 −µ
ε′
2 ε′

4 −µ 0

 , (21)

Similarly to the chargino case, there are the explicit
SUSY breaking mass terms in the diagonal, M1 and M2,
and the SUSY preserving µ-mass terms connecting H̃0

1 and
H̃0

2. The rest of the off-diagonal terms come from the spon-
taneous breaking of SU(2)L × U(1)Y and are specifically
given by:

ε′
1 = −mZ cos β sin θW , ε′

2 = mZ sinβ sin θW ,
ε′
3 = mZ cos β cos θW , ε′

4 = −mZ sinβ cos θW .
(22)

Since Y is symmetric, only one 4 × 4 unitary matrix, Z,
is required to diagonalize it,

M̃ 0 = diag(M̃ 0
1 , M̃ 0

2 , M̃ 0
3 , M̃ 0

4 ) = Z∗Y Z−1 . (23)
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Here the diagonal elements can be either positive or neg-
ative. As in the chargino case, we choose the Majorana
masses M1, M2 to be positive and allow µ to be positive
or negative. The physical neutralino masses |M̃ 0

1 |, |M̃ 0
2 |,

|M̃ 0
3 |, |M̃ 0

4 | are defined to be positive. In case of negative
eigenvalues, one defines a new matrix N such that,

N∗Y N−1 = diag(|M̃ 0
1 |, |M̃ 0

2 |, |M̃ 0
3 |, |M̃ 0

4 |) , (24)

and express all the interactions in terms of N . N can be
trivially obtained from Z by multiplying all the entries in
the file corresponding to the negative eigenvalue by the
imaginary unity; i.e, Nkl = η

′
kZkl (no sum over k), where

η
′
k = 1 if the eigenvalue M̃ 0

k is positive and η
′
k = i if the

eigenvalue M̃ 0
k is negative (k, l = 1, 2, 3, 4).

In the large SUSY masses limit important simplifica-
tions do occur. In order to get the four neutralino masses
larger than the electroweak scale it is necessary to consider
the mass parameters in the range M1, M2, µ � mZ . There-
fore, to a very good approximation, the off-diagonal terms
ε′

i(i = 1, 2, 3, 4) are negligible as compared to M1, M2 and
µ. The physical mass eigenstates χ̃0

i , (i = 1, . . . , 4) are pre-
dominantly B̃, W̃3, (H̃0

1 +H̃0
2)/

√
2 and (H̃0

1 −H̃0
2)/

√
2, and

their corresponding masses are close to M1, M2, |µ| and |µ|
respectively.

In this case,

Z =


1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2

− 1√
2

 , (25)

and if µ ≥ 0 or µ < 0, N will be respectively:

N =


1 0 0 0
0 1 0 0
0 0 i√

2
i√
2

0 0 1√
2

− 1√
2

 , or

N =


1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 i√
2

− i√
2

 .

(26)

2.5 The relevant Lagrangian and notation

Once the mass eigenstates that we plan to the integrate
out have been specified, we need to specify in addition
the relevant interaction terms of the supersymmetric La-
grangian LSUSY. Since, in the present paper, we aim to
calculate the one-loop effective action for external W±, Z
and γ gauge bosons, it is easy to see that the relevant in-
teraction terms are those that connect gauge bosons with
sfermions on one hand, and gauge bosons with neutralinos
and charginos on the other hand. The terms connecting
inos with sfermions are not relevant at one loop level. We
write these interaction terms as well as the free Lagrangian
in the mass-eigenstate basis which is the one that will be

used in the rest of the paper. All together the relevant
terms for the two points functions are the following:

LMSSM(V, f̃ , χ̃+, χ̃o) = L(0)(V ) + Lf̃ (V, f̃) + Lχ̃(V, χ̃),

(27)

where L(0)(V ) is the standard quadratic Lagrangian in the
Rξ gauge for the electroweak gauge bosons V = W±, Z, γ,
and Lf̃ (V, f̃) and Lχ̃(V, χ̃) are the Lagrangians for the
sfermions and the neutralinos and charginos respectively.
We use here a compact notation that is convenient for the
integration in the path integral formalism. Lf̃ is defined
as follows:

Lf̃ (V, f̃) = L(0)
f̃

(f̃) + L(1)
f̃

(V, f̃) + L(2)
f̃

(V, f̃), (28)

where L(0)
f̃

(f̃) is the sfermions free Lagrangian:

L(0)
f̃

(f̃) =
∑

f̃

[(
∂µf̃+∂µf̃

)
−
(
f̃+M̃2

f f̃
)]

, (29)

and f̃ is the shorthand notation for sfermions of all types.
It must be understood as a column matrix with four en-
tries, containing either the four mass eigenstates if it refers
to squarks or the three mass eigenstates if it refers to slep-
tons. If we use the third generation notation, as before, it
reads:

f̃ ≡


t̃1
t̃2
b̃1

b̃2

 if f̃ = q̃ ; f̃ ≡

 ν̃
0
τ̃1
τ̃2

 if f̃ = l̃ (30)

the sum
∑

f̃ is over the three generations and, in the case
of squarks, it runs also over the Nc color indexes. The
corresponding squared mass matrices are:

M̃2
f = diag(m̃2

t1 , m̃
2
t2 , m̃

2
b1 , m̃

2
b2) if f̃ = q̃;

M̃2
f = diag(m̃2

ν , 0, m̃2
τ1

, m̃2
τ2

) if f̃ = l̃.
(31)

The interaction Lagrangian of sfermions and gauge
bosons consists of two parts. L(1)

f̃
gives the interactions

of two sfermions and one gauge boson and L(2)
f̃

gives the
interactions of two sfermions and two gauge bosons:

L(1)
f̃

(V, f̃) =
∑

f̃

{
−ieAµf̃+Q̂f

↔
∂µ f̃ − ig

cW

Zµf̃+Ĝf

↔
∂µ f̃

− ig√
2

[
W+

µ f̃+Σtb
f

↔
∂µ f̃ + W−

µ f̃+Σbt
f

↔
∂µ f̃

]}
, (32)

L(2)
f̃

(V, f̃) =
∑

f̃

{
e2AµAµf̃+Q̂f Q̂f f̃

+
g2

c2
W

ZµZµf̃+Ĝf Ĝf f̃ +
2ge

cW

AµZµf̃+Q̂f Ĝf f̃



320 A. Dobado et al.: Decoupling of supersymmetric particles

+
1
2
g2W+

µ Wµ− f̃+Σf f̃ +
eg√
2
yfAµWµ+ f̃+Σtb

f f̃

+
eg√
2
yfAµWµ− f̃+Σbt

f f̃ − g2
√

2
yf

s2
W

cW

ZµWµ+ f̃+Σtb
f f̃

− g2
√

2
yf

s2
W

cW

ZµWµ− f̃+Σbt
f f̃

}
, (33)

where:

Q̂f = R−1
f QfRf , Ĝf = R−1

f GfRf ,

Qf = diag (Qt, Qt, Qb, Qb) ,

Gf = diag (
1
2

− Qts
2
W ,−Qts

2
W ,−1

2
Qbs

2
W ,−Qbs

2
W ) ,

yf =
1
3

if f̃ = q̃; yf = −1 if f̃ = l̃ ,

Σtb
f =

(
0 σ̂tb

0 0

)
=
(
Σbt

f

)T

, σ̂tb = R−1
t σRb ,

Σf =
(

σ̂t 0
0 σ̂b

)
, σ̂t,b = R−1

t,b σRt,b ,

σ =
(

1 0
0 0

)
, Rf =

(
Rt 0
0 Rb

)
, (34)

and Rt, Rb have been defined in (9).
The above expressions have been written for f̃ = q̃.

For f̃ = l̃ analogous expressions are obtained by changing
t → ν, b → τ , and the corresponding changes in the cou-
plings and rotation matrices. For brevity, we will use in
the following the squarks notation.

The Lagrangian for neutralinos and charginos is:

Lχ̃(V, χ̃) = L(o)
χ̃ (χ̃) + L(1)

χ̃ (V, χ̃), (35)

where L(o)
χ̃ is the free Lagrangian:

L(0)
χ̃ (χ̃) =

1
2

¯̃χo(i∂/ − M̃o)χ̃o + ¯̃χ+(i∂/ − M̃+)χ̃+, (36)

with,

χ̃o =

 χ̃o
1

χ̃o
2

χ̃o
3

χ̃o
4

 ; χ̃+ =
(

χ̃+
1

χ̃+
2

)
, (37)

and the mass matrices M̃+ and M̃o have been defined in
(16) and (23) respectively.

The interaction Lagrangian L(1)
χ̃ consists of three parts,

L(1)
χ̃ (V, χ̃) = L(1)

o (V, χ̃o) + L(1)
+ (V, χ̃+)

+L(1)
+o(V, χ̃+, χ̃o), (38)

L(1)
o gives the interactions between neutralinos and gauge

bosons, L(1)
+ the interactions between charginos and gauge

bosons and L(1)
+o the interactions that connect charginos,

neutralinos and gauge bosons. More explicitly,

L(1)
o (V, χ̃o) =

g

2cW

Zµ
¯̃χo

γµ(O′′
LPL + O′′

RPR)χ̃o

L(1)
+ (V, χ̃+) = −eAµ

¯̃χ+
γµχ̃+

+
g

cW

Zµ
¯̃χ+

γµ(O′
LPL + O′

RPR)χ̃+

L(1)
+o(V, χ̃+, χ̃o) = gW−

µ
¯̃χo

γµ(OLPL + ORPR)χ̃+

+gW+
µ

¯̃χ+
γµ(O+

L PL + O+
R PR)χ̃o , (39)

where OL,R, O′
L,R and O′′

L,R are the following 4×2, 2×2
and 4 × 4 matrices, respectively:

(OL)ij = − 1√
2
Ni4V

∗
j2 + Ni2V

∗
j1 ;

(OR)ij =
1√
2
N∗

i3Uj2 + N∗
i2Uj1; i = 1, 2, 3, 4; j = 1, 2 ,

(O′
L)ij = −Vi1V

∗
j1 − 1

2
Vi2V

∗
j2 + δijs

2
W ;

(O′
R)ij = −U∗

i1Uj1 − 1
2
U∗

i2Uj2 + δijs
2
W ; i, j = 1, 2 ,

(O′′
L)ij = −1

2
Ni3N

∗
j3 +

1
2
Ni4N

∗
j4 ;

(O′′
R)ij = −(O′′

L)∗
ij ; i, j = 1, 2, 3, 4 . (40)

In particular, in the limit of large neutralino and
chargino masses and by using the limiting expressions of
U, V and N given in (19), (20) and (26) respectively, we
get the following values for the coupling matrices, which
are valid for µ ≥ 0 (µ < 0):

OL = OR =


0 0
1 0
0 −i

2 ( 1
2 )

0 1
2 (−i

2 )

 ;

O′
L = O′

R =
(

sW
2 − 1 0
0 sW

2 − 1
2

)
;

O′′
L = O′′

R =


0 0 0 0
0 0 0 0
0 0 0 −i

2 ( i
2 )

0 0 i
2 (−i

2 ) 0

 .

(41)

3 The large sparticle masses limit

In this section we describe the large sparticle masses limit.
We consider the situation where all the sparticle masses
are much larger than the electroweak scale and therefore
much heavier than their corresponding standard partners.
In particular this could be the case if the sparticle masses
are well above mZ , mW and mt but still below the few
TeV upper bound that is imposed by the standard solu-
tion to the hierarchy problem. The SUSY masses are also
considered much larger than any of the external momenta
in the Green functions that are studied in this work. The
reason for this choice is because we are interested in the
low energy limit of the MSSM and, in particular, in look-
ing for any possible non-decoupling effect of heavy SUSY
particles in the low energy observables as for instance the
high precision observables at LEP.
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Generically we writte m̃2
i � M2

EW , q2, where m̃i de-
notes any of the physical sparticle masses, MEW any of the
electroweak masses (mZ , mW , mt, . . .) and q denotes any of
the external momenta. As for the analytical computation,
whenever we refer to the large sparticle masses limit of a
given one-loop Feynman integral, we mean the asymptotic
limit m̃i → ∞ for all sparticle masses that are involved in
that integral. However, we would like to emphasize that
this asymptotic limit is not fully defined unless one spec-
ifies in addition the relative sizes of the involved masses.
In other words, the result may depend, in general, on the
particular way this asymptotic limit is taken. This can be
seen in many examples of one-loop integrals. In order to
illustrate this, let us consider, for example, the well known
scalar two-point function B0(q2, m1, m2), as defined for in-
stance in [15]. The result of this function in dimensional
regularization is:

B0(q2, m1, m2) = ∆ε − 1
2

(
log

m2
1

µ2
o

+ log
m2

2

µ2
o

)
+ 1 (42)

−
(

m2
1 + m2

2

m2
1 − m2

2

)
log

m1

m2

+ F (q2, m1, m2) ,

where q2 is the external momentum, m1 and m2 are the
masses of the two internal propagators, ∆ε and µo are
defined in Appendix B and the explicit expression for the
function F (q2, m1, m2) can be found in [15].

Let us consider the large masses limit, m1, m2 � q2,
of B0 in the two following situations:

m2
1 = m2

2 ≡ m2, m2 � q2 (case A) and
m2

1 = 2m2
2 ≡ 2m2, m2 � q2 (case B ) .

By explicit computation of B0(q2, m1, m2) in this two
different limits we get:

case A

B0 = ∆ε − log
m2

µ2
o

+
[
2
3

(
q2

4m2

)
+ O

(
q4

m4

)]
(43)

case B

B0 = ∆ε − log
m2

µ2
o

+ 1 − 2 log 2 +
[
O

(
q4

m4

)]
(44)

The quantities in square brackets represent the de-
coupling effects since they vanish in the asymptotic limit
m2 → ∞. The remaining terms contain all the non-
decoupling effects of particles 1 and 2 and they are the
object of our interest here since they do not vanish in the
asymptotic limit m2 → ∞. It is clear from the above re-
sults that the two cases lead to different non-decoupling
effects.

For the present study of large sparticle masses limit,
m̃2

i � M2
EW , q2 we consider the two following different

possibilities for the physical masses (i 6= j):

case A
∣∣m̃2

i − m̃2
j

∣∣� ∣∣m̃2
i + m̃2

j

∣∣ , (45)

case B O
(∣∣m̃2

i − m̃2
j

∣∣) ≈ O
(∣∣m̃2

i + m̃2
j

∣∣) . (46)

In the first case, the asymptotic limit m̃2
i,j → ∞ is

taken such that,
∣∣∣ m̃2

i −m̃2
j

m̃2
i
+m̃2

j

∣∣∣ � 1 and therefore this mass

ratio is a good parameter for the large mass expansion.
The extreme situation of total degeneracy m̃2

i = m̃2
j can

be considered as a particular example belonging to this
case A.

In case B the asymptotic limit m̃2
i,j → ∞ is taken such

that,
∣∣∣ m̃2

i −m̃2
j

m̃2
i
+m̃2

j

∣∣∣ ≈ O(1) and therefore it is not the proper
parameter for the large mass expansion. Physically this
situation corresponds to consider both masses m̃i and m̃j

different and large with their difference being also large.
The previous considered case B for B0 is one example
belonging to this situation.

In the following we study how these two cases can be
accomplished in the MSSM for each one of the sparticle
sectors that are considered in this work.

3.1 Large mass limit in the inos sector

Given the particular form of the mass matrices in the inos
sector, (14) and (21), the large chargino masses limit,
M̃+2

1,2 � M2
EW , and the large neutralino masses limit,

M̃ 02

1,2,3,4 � M2
EW , can only be accomplished if the three

involved SUSY mass parameters are taken large, namely,
if M2

1 , M2
2 , µ2 � M2

EW . As we have already mentioned in
the previous section, the physical masses are, in this limit:

M̃+
1 ≈ M2 , M̃+

2 ≈ |µ| ,
M̃ 0

1 ≈ M1 , M̃ 0
2 ≈ M2 , M̃ 0

3 ≈ |µ| , M̃ 0
4 ≈ |µ| . (47)

In consequence, the two situations A and B above can
be accomplished in the inos sector by choosing the corre-
sponding possibilities for the parameters, M1, M2 and µ.
For instance, |M̃+2

1 −M̃+2

2 | � |M̃+2

1 +M̃+2

2 | can be accom-
plished if one chooses |M2

2 − µ2| � |M2
2 + µ2|. However,

by inspection of the coupling matrices in the inos-sector,
(41), we see that only the following pairings will occur
in the one-loop integrals: (χ̃+

1 , χ̃o
2) , (χ̃+

2 , χ̃o
3) , (χ̃+

2 , χ̃o
4) ,

(χ̃+
1 , χ̃+

1 ) , (χ̃+
2 , χ̃+

2 ) and (χ̃o
3 , χ̃

o
4) . Therefore, in this sec-

tor the masses that need to be compared when performing
the large mass limit always belong to case A.

3.2 Large mass limit in the sfermions sector

Here the situation is very different since the mixing may
not be negligible and hence it may play a relevant role
in taking the large mass limit. For definitess and for il-
lustrative purposes, let us consider here the stop-sbottom
sector. First of all, the requirement that all sparticles be
heavier that their corresponding partners reads in this
case m̃2

t1,2
> m2

t and m̃2
b1,2

> m2
b and imply the follow-

ing conditions on the mass matrix parameters of (6) : ε2 <

LR+m4
t −m2

t (L+R) and ε′2 < L′R′+m4
b −m2

b(L
′+R′) .

On the other hand, the wanted large stop and sbot-
tom masses limit, m̃2

t1,2
, m̃2

b1,2
� M2

EW can only be accom-
plished if L , R , L′ , R′ � M2

EW , and therefore the above
conditions translate into the simpler ones: ε2 < LR and
ε′2 < L′R′ respectively. This means that in taking the
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large masses limit the mixing can be large but not ar-
bitrarily large since it is bounded from above by these
conditions.

By using the definitions in the MSSM of (7), these
inequalities can be expressed in terms of the soft SUSY
breaking masses and the µ parameter as follows:

m2
t (At − µ cot β)2 < M2

Q̃M2
Ũ ,

m2
b (Ab − µ tanβ)2 < M2

Q̃M2
D̃ ,

M2
Q̃, M2

D̃ , M2
Ũ � m2

t , m
2
Z , (48)

where the later condition implies, in turn, the limiting
values:

m̃2
t1 ≈ M2

Q̃ , m̃2
t2 ≈ M2

Ũ , m̃2
b1 ≈ M2

Q̃ , m̃2
b2 ≈ M2

D̃ . (49)

In summary, in other to get large stop and sbottom masses
one needs large values of the SUSY breaking masses MQ̃,
MŨ and MD̃ and in order not to get a too large mixing,
the trilinear couplings At, Ab and the µ parameter must
be constrained from above by the previous inequalities.
In particular, µ cannot be arbitrarily large when the rest
of the parameters are kept fixed, since the lightest mass
eigenvalues of (10) can be driven to non-physical negative
values.

Notice that the µ parameter enters in both the sfer-
mions and the inos sector and therefore the large spar-
ticle masses limit in both sectors are not independent.
More specifically, the large masses limit in the ino sector
which requires a large value of µ, must respect in addi-
tion the above restriction on µ. In practice, this can be
implemented by several different choices of the SUSY pa-
rameters.

Let us study now how the previous cases A and B
can be reached in the sfermions sector. We present the
discussion in terms of the six generic mass matrix param-
eters L , R , ε , L′ , R′ , ε′. Notice that it is just once these
are specified in terms of the MSSM parameters that there
are some correlations among them which are relevant in
studing the large sparticle masses limit.

Let us consider first the simplest case, corresponding
to vanishing mixing:

ε = ε′ = 0 ⇒ st = sb = 0 , and
m̃2

t1 = L , m̃2
t2 = R , m̃2

b1
= L′ , m̃2

b2
= R′.

The only possible pairings in this case are: (t̃1, t̃1) ,

(t̃2, t̃2) , (b̃1, b̃1) , (b̃2, b̃2) and (t̃1, b̃1) . Therefore there are
just two masses to be compared, namely, m̃t1 and m̃b1 .
Generically, both possibilities A and B could occur. How-
ever, in restricting us to the MSSM parameters of (7) it is
clear that only possibility A does remain, since |L−L′| �
|L+L′| is always true in the large sparticle masses limit of
the MSSM. Notice that this situation applies to all squarks
of the first and second generation and to all sleptons.

Let us consider next the case of non-vanishing mixings
ε 6= 0 , ε′ 6= 0 .Notice that it is in fact the most realistic
situation in the stop-sbottom sector of the MSSM since, as
we have already said, |ε| and |ε′| grow linearly with µ and
this must be taken large (µ2 � M2

EW ) to get heavy inos.
Generically, therefore, in taking the large masses limit the
mixings ε and ε′ should not be held fixed.

For non-vanishing mixings, all possible pairings do oc-
cur: (t̃1, t̃1), (t̃2, t̃2), (b̃1, b̃1), (b̃2, b̃2) and (t̃1, t̃2), (t̃1, b̃1),
(t̃1, b̃2), (b̃1, b̃2), (b̃1, t̃2), (t̃2, b̃2). Therefore, all the mass
pairs need to be compared. For illustrative purposes let
us analize here the two cases A and B in particular for the
(t̃1, t̃2) pair.

case A
∣∣∣∣m̃2

t1 − m̃2
t2

m̃2
t1 + m̃2

t2

∣∣∣∣� 1 . (50)

By using (10) this condition can be written as,[(
L−R
L+R

)2
+
(

2ε
L+R

)2
] 1

2

� 1

m(
L−R
L+R

)
� 1 and

(
2ε

L+R

)
� 1 (51)

The proper parameter for the large mass expansion in
terms of the physical masses of (50) is translated into the
two small parameters of (51). Furthermore, within this
case there are still two different possibilities:

A1 ) L = R
It can be solved exactly for all values of ε 6= 0 and

ε′ 6= 0 and gives the limiting values,
st = ct = 1√

2
=⇒ tan 2φt = 2ε

L−R → ∞ .
The proper parameter for the expansion in this case is(

2ε
L+R

)
.

A2 ) L 6= R
This is the most plausible situation in the MSSM. In

this case the two above conditions in (51) can be written
in terms of the MSSM parameters respectively as follows,∣∣∣∣M2

Q̃
− M2

Ũ
+ O(M2

EW )
M2

Q̃
+ M2

Ũ

∣∣∣∣� 1 (52)

and, ∣∣∣∣2mt(At − µ cot β)
M2

Q̃
+ M2

Ũ

∣∣∣∣� 1 (53)

Notice that if one assumes, as usual, that all the SUSY
mass parameters are of the same order, namely, if MQ̃,
MŨ , At, µ ∼ O(MSUSY ) with MSUSY � MEW being the
effective SUSY breaking mass scale, then (53) is automati-
cally fulfiled, since this small parameter goes as O

(
MEW

MSUSY

)
.

In order to get the first condition of (52) also automati-
cally accomplished in the MSSM, one needs in addition
to impose the equality of the two soft SUSY breaking pa-
rameters MQ̃ = MŨ . In this case the small parameter of
(52) goes as O

(
M2

EW

M2
SUSY

)
. Any departure from this exact

equality would lead us to a different situation which is
considered next.

case B
∣∣∣∣m̃2

t1 − m̃2
t2

m̃2
t1 + m̃2

t2

∣∣∣∣ ≈ O(1) . (54)

This can be written as:[(
L − R

L + R

)2

+
(

2ε

L + R

)2
] 1

2

≈ O(1) . (55)
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If, as before, one assumes MQ̃, MŨ , At, µ ∼ O(MSUSY )
then (55) can be traslated in terms of the MSSM param-
eters as: ∣∣∣∣M2

Q̃
− M2

Ũ

M2
Q̃

+ M2
Ũ

∣∣∣∣ ≈ O(1) , (56)

since (53) still holds.
This condition is naturally reached if one chooses, (M2

Q̃

−M2
Ũ
) ∼ O(M2

SUSY ). The parameters in (54) and (56) are
obviously not the proper parameters for the large mass
expansion in this case, but the parameter

(
2ε

L+R

)
given in

the MSSM by (53) is still a good one. Other proper choices
are also available. In particular, both quantities, tan 2φt

and st turn out to be good parameters for the expansion
in this case. In fact,

tan 2φt =
2ε

L − R

' 2mt(At − µ cot β)
M2

Q̃
− M2

Ũ

≈ O

(
MEW

MSUSY

)
, (57)

and similarly, st ≈ O
(

MEW

MSUSY

)
.

One can make a parallel discussion for the sbottom
sector and conclude similarly that, sb ≈ O

(
MEW

MSUSY

)
.

In consequence, case B implies that only the follow-
ing pairings do remain in the large squark masses limit:
(t̃1, t̃1) , (t̃2, t̃2) , (b̃1, b̃1) , (b̃2, b̃2) and (t̃1, b̃1) and therefore,
once again, the masses to be compared are m̃t1 and m̃b1 ,
which fulfil automatically the condition |m̃2

t1 − m̃2
b1

| �
|m̃2

t1 + m̃2
b1

| in the MSSM.
In summary, the sfermion sector of the MSSM behaves

in the large masses limit (MSUSY � MEW ) as follows,

1. Sfermions f̃1, f̃2 other than stop and sbottom. The
masses of their standard fermionic partners are ne-
glected (ε = ε′ = 0) and,∣∣∣∣∣m̃2

f1
− m̃2

f2

m̃2
f1

+ m̃2
f2

∣∣∣∣∣ ∼ O

(
M2

EW

M2
SUSY

)
� 1 .

It is the proper parameter for the large mass expansion
of a one loop integral involving the pairing (f̃1, f̃2). The
corresponding SUSY mass parameters ML̃, MẼ, . . . are
just required to be of order MSUSY .

2. Stops and sbottoms (ε 6= 0, ε′ 6= 0).
2a ) If MQ̃ = MŨ = MD̃ ∼ O(MSUSY ) and µ, At, Ab ∼
O(MSUSY ) then,∣∣∣∣m̃2

i − m̃2
j

m̃2
i + m̃2

j

∣∣∣∣ ∼ O

(
M2

EW

M2
SUSY

)
� 1 ,

i, j = t̃1, t̃2, b̃1, b̃2 (i 6= j)

It is the proper parameter for the large mass expan-
sion of a one-loop integral involving the pair (i, j) with
i 6= j. In the asymptotic limit MSUSY → ∞ the mix-
ing is maximal and st, sb tend to their limiting values,

st = sb = 1√
2
.

2b ) If MQ̃, MŨ , MD̃, µ, At, Ab ∼ O(MSUSY ) with
(M2

i − M2
j ) ∼ O(M2

SUSY ), i, j = Q̃, Ũ , D̃ (i 6= j) then,

st, sb ∼ O

(
MEW

MSUSY

)
.

In the asymptotic limit MSUSY → ∞ then st, sb → 0
and all the one-loop integrals involving pairings (i, j)
with i 6= j decouple except (t̃1, b̃1) for which:∣∣∣∣∣m̃2

t1 − m̃2
b1

m̃2
t1 + m̃2

b1

∣∣∣∣∣ ∼ O

(
M2

EW

M2
SUSY

)
� 1 .

In conclusion, the large sparticle masses limit in the
MSSM can generically be studied in terms of the physical
masses by considering the corresponding one-loop Feyn-
man integrals in the limit m̃2

i , m̃
2
j � M2

EW , q2 with either
possibility A : ∣∣∣∣m̃2

i − m̃2
j

m̃2
i + m̃2

j

∣∣∣∣� 1

or possibility B :∣∣∣∣m̃2
i − m̃2

j

m̃2
i + m̃2

j

∣∣∣∣ ≈ O(1) if i 6= j .

In this paper we have analized in full detail the possi-
bility A and we will demonstrate the decoupling of SUSY
particles under this assumption. The different possibility
B is not analized generically in this work, but it will be
studied for the particular case of S, T and U in Sect. 6,
where we will demonstrate that decoupling of sparticles
does occur in both cases A and B.

4 Effective action for the electroweak gauge
bosons in the MSSM

Our aim is to compute the effective action for the stan-
dard particles, Γeff [φ], that is defined through functional
integration of all the sparticles of the MSSM. In short no-
tation it is defined by,

eiΓeff [φ] =
∫

[dφ̃] eiΓMSSM[φ,φ̃] (58)

where φ = l, q, A, W±, Z, g, H are the SM particles; φ̃ =
l̃, q̃, Ã, W̃±, Z̃, g̃, H̃ their supersymmetric partners, and

ΓMSSM[φ, φ̃] ≡
∫

dxLMSSM(φ, φ̃) ; dx ≡ d4x . (59)

In the present paper we are interested in the part of
the effective action that contains the two point Green
functions with external gauge bosons ΓV1V2

µν (k), V1, V2 =
A, Z, W±. This will allow us to study the decoupling prop-
erties of the gauge boson self-energies and from them we
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will deduce the corresponding analytical expressions for
the well known parameters S, T and U . The computa-
tion of the effective action will be performed at the one
loop level by using dimensional regularization and will in-
clude the integration of all the sfermions f̃ , the neutra-
linos χ̃o and the charginos χ̃+. We leave the integration
of the Higgs sector as well as the computation of other
relevant parts of the effective action, as for instance the
higher point Green functions or the Green functions with
external fermions, for forthcoming works [21,22].

We start by defining the piece of the effective action
that we want to compute,

eiΓeff [V ] (60)

=
∫

[df̃ ][df̃∗][dχ̃+][d¯̃χ+][dχ̃o] eiΓMSSM[V,f̃ ,χ̃+,χ̃o]

where,

ΓMSSM[V, f̃ , χ̃+, χ̃o] ≡
∫

dx LMSSM(V, f̃ , χ̃+, χ̃o)

=
∫

dx L(0)(V ) +
∫

dx Lf̃ (V, f̃)

+
∫

dx Lχ̃(V, χ̃)

≡ Γ0[V ] + Γf̃ [V, f̃ ] + Γχ̃[V, χ̃] (61)

and Lf̃ , Lχ̃ have been defined in (28) and (35) respectively.
In order to perform the functional integration, it is con-

venient to write the classical action in terms of operators.
Thus by using (28) through (34) we get,

Γf̃ [V, f̃ ] = 〈f̃+Af̃ f̃〉 (62)

where,

Af̃ ≡ A
(0)
f̃

+ A
(1)
f̃

+ A
(2)
f̃〈

f̃+A
(i)
f̃

f̃
〉

≡
∑

f̃

∫
dxdyf̃+

x A
(i)
f̃xy

f̃y , i = 0, 1, 2 (63)

and the operators are:

A
(0)
f̃xy

≡
(
−2 − M̃2

f

)
x

δxy

A
(1)
f̃xy

≡ −i e
(
∂µAµQ̂f + 2 Q̂fAµ∂µ

)
x

δxy

− i g

cw

(
∂µZµĜf + 2 ĜfZµ∂µ

)
x

δxy

− i g√
2

(
∂µW+µΣtb

f + 2 Σtb
f W+

µ ∂µ
)
x

δxy + h.c.

A
(2)
f̃xy

≡
(

e2Q̂2
fAµAµ +

2 g e

cw
AµZµQ̂f Ĝf +

g2

c2
w

Ĝ2
fZµZµ

+
1
2
g2ΣfW+

µ Wµ− +
eg√
2
yfAµWµ+Σtb

f

+
eg√
2
yfAµWµ−Σbt

f − g2
√

2
yf

s2
W

cW

ZµWµ+Σtb
f

− g2
√

2
yf

s2
W

cW

ZµWµ−Σbt
f

)
x

δxy . (64)

In these formulae and from now on we will use the
compact notation,

φ(x) ≡ φx , δ(x − y) ≡ δxy , A(x, y) ≡ Axy

TrA = tr
∫

dxAxx =
∑

a

∫
dxAaa

xx . (65)

Analogously, by using (35) through (39) we get,

Γχ̃[V, χ̃] =
1
2

〈
¯̃χ0
(
A

(0)
0 + A

(1)
0

)
χ̃o
〉

+
〈

¯̃χ+
(
A

(0)
+ + A

(1)
+

)
χ̃+
〉

+
〈

¯̃χ0
A

(1)
0+χ̃+

〉
+
〈

¯̃χ+
A

(1)
+0χ̃

o
〉

(66)

where, 〈
¯̃χ0

A
(i)
0 χ̃o

〉
≡
∫

dxdy ¯̃χ0
xA

(i)
0 xyχ̃o

y ,〈
¯̃χ+

A
(i)
+ χ̃+

〉
≡
∫

dxdy ¯̃χ+
x A

(i)
+ xyχ̃+

y ; i = 0, 1 ,〈
¯̃χ0

A
(1)
0+χ̃+

〉
≡
∫

dxdy ¯̃χ0
xA

(1)
0+ xyχ̃+

y ,〈
¯̃χ+

A
(1)
+0χ̃

o
〉

≡
∫

dxdy ¯̃χ+
x A

(1)
+0 xyχ̃o

y , (67)

and the operators are:

A
(0)
0 xy ≡

(
i/∂ − M̃0

)
x

δxy , A
(0)
+ xy ≡

(
i/∂ − M̃+

)
x

δxy ,

A
(1)
0 xy ≡

[
g

cw
Zµγµ (O′′

LPL + O′′
RPR)

]
x

δxy ,

A
(1)
+ xy ≡

[
g

cw
Zµγµ (O′

LPL + O′
RPR) − e Aµγµ

]
x

δxy ,

A
(1)
0+ xy ≡ [

g W−
µ γµ (OLPL + ORPR)

]
x

δxy ,

A
(1)
+0 xy ≡ [

g W+
µ γµ

(
O+

L PL + O+
RPR

)]
x

δxy , (68)

being PL = 1/2(1 − γ5) and PR = 1/2(1 + γ5).
Given all the ingredients, we now proceed with the

integration. The formula of the effective action (60) can
be factorized into three pieces:

eiΓeff [V ] = eiΓo[V ]eiΓ f̃
eff

[V ]eiΓ χ̃
eff

[V ] (69)

where,

eiΓ f̃
eff

[V ] =
∫

[df̃ ][df̃∗]eiΓf̃ [V ,f̃ ] (70)

eiΓ χ̃
eff

[V ] =
∫

[dχ̃+][d¯̃χ+][dχ̃o]eiΓχ̃[V ,χ̃] (71)

We next compute Γ f̃
eff [V ] and Γ χ̃

eff [V ] separately. By
substituting (62) into (70), and by performing a standard
Gaussian integration we get,

Γ f̃
eff [V ] = iTr log Af̃

= iTr log
[
A

(o)
f̃

(
1 + A

(o)−1
f̃

(
A

(1)
f̃

+ A
(2)
f̃

))]
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The logarithm can be expanded and the V independent
terms can be left apart since they are irrevelant for the
present computation. We get,

Γ f̃
eff [V ] = i

∞∑
k=1

(−1)k+1

k
Tr
[
Gf̃

(
A

(1)
f̃

+ A
(2)
f̃

)]k
(72)

where, Gf̃ ≡ A
(o)−1

f̃
and represents the free sfermion prop-

agator matrix in the position space,

Gij

f̃xy
≡
∫

dDq

(2π)D
µ4−D

o e−iq(x−y)
(
q2 − M̃2

f

)−1

ij
(73)

with,(
q2 − M̃2

f

)−1

= diag

(
1

q2 − m̃2
t1

,
1

q2 − m̃2
t2

,
1

q2 − m̃2
b1

,
1

q2 − m̃2
b2

)

if f̃ = q̃ ; or(
q2 − M̃2

f

)−1
= diag

(
1

q2 − m̃2
ν

,
1
q2 ,

1
q2 − m̃2

τ1

,
1

q2 − m̃2
τ2

)
if f̃ = l̃ ,
and, as always, a sum over the three generations and over
the Nc colors of the squarks are understood.

Finally, if we keep just the terms that contribute to the
two-point functions, the effective action generated from
sfermions integration can be written as,

Γ f̃
eff [V ] = iTr

(
Gf̃A

(2)
f̃

)
− i

2
Tr
(
Gf̃A

(1)
f̃

)2
+O

(
V 3) (74)

Notice that in the case of sleptons we have formally
integrated over the four components of f̃ = l̃. This inte-
gration, in principle, would include a rigth-handed sneu-
trino. However, due to the fact that this sneutrino doesn’t
couple to any of the gauge bosons (see the definitions of
Q̂f , Ĝf , Σf , Σtb

f in (34)), it does not finally contribute to
the effective action, as it must be.

We next compute the effective action generated from
neutralinos and charginos integration. By substituting (66)
into (71) we get,

eiΓ χ̃
eff

[V ] (75)

=
∫

[dχ̃+][d¯̃χ+][dχ̃o] exp
(

i

{
1
2

〈
¯̃χo
(
A(o)

o + A(1)
o

)
χ̃o
〉

+
〈̄
χ̃

+(A(o)
+ + A

(1)
+ )χ̃+

〉
+
〈̄
χ̃

o
A

(1)
o+χ̃+

〉
+
〈̄
χ̃

+
A

(1)
o+χ̃o

〉})
.

By performing first the integration over the charginos we
find,

eiΓ χ̃
eff

[V ] = det
(
A

(o)
+ + A

(1)
+

)∫
[dχ̃o]

×e
i 1
2

〈
¯̃χo

[
A(o)

o +A(1)
o −2A

(1)
o+

(
A

(o)
+ +A

(1)
+

)−1
A

(1)
+o

]
χ̃o

〉

and next, by integrating over neutralinos we get,

eiΓ χ̃
eff

[V ] = det
(
A

(o)
+ + A

(1)
+

)
×det

[
A(o)

o + A(1)
o − 2A

(1)
o+

(
A

(o)
+ + A

(1)
+

)−1
A

(1)
+o

] 1
2

.

The effective action can therefore be written as,

Γ χ̃
eff [V ] = −iTr log

(
A

(o)
+ + A

(1)
+

)
(76)

− i

2
Tr log

[
A(o)

o + A(1)
o − 2A

(1)
o+

(
A

(o)
+ + A

(1)
+

)−1
A

(1)
+o

]
.

These logarithms can be worked out as before. By ignoring
the V -independent terms and by expanding the logarithm
we find,

−iTr log
(
A

(o)
+ + A

(1)
+

)
= −iTr log

[
A

(o)
+

(
1 + A

(o)−1

+ A
(1)
+

)]
= −iTr log

(
1 + k+A

(1)
+

)
= −i

∞∑
k=1

(−1)k+1

k
Tr
(
k+A

(1)
+

)k

, (77)

where k+ ≡ A
(o)−1

+ and represents the free chargino pro-
pagator matrix in the position space,

kij
+xy ≡

∫
dDq

(2π)D
µ4−D

o e−iq(x−y)(q/ − M̃+)−1
ij ,

(i,j = 1,2)

(78)

Similarly, we find,

− i

2
Tr log

[
A(o)

o + A(1)
o − 2A

(1)
o+

(
A

(o)
+ + A

(1)
+

)−1
A

(1)
+o

]
= − i

2
Tr log

[
A(o)

o

(
1 + A(o)−1

o A(1)
o

−2A(o)−1

o A
(1)
o+

(
A

(o)
+ + A

(1)
+

)−1
A

(1)
+o

)]
= − i

2
Tr log

[
1 + koA

(1)
o

−2koA
(1)
o+

(
1 + k+A

(1)
+

)−1
k+A

(1)
+o

]
= − i

2

∞∑
k=1

(−1)k+1

k
Tr

[
koA

(1)
o

−2koA
(1)
o+

∞∑
r=0

(−1)r
(
k+A

(1)
+

)r

k+A
(1)
+o

]k

(79)

where ko ≡ A
(o)−1

o and represents the free neutralino prop-
agator matrix in the position space,

kij
oxy ≡

∫
dDq

(2π)D
µ4−D

o e−iq(x−y)(q/ − M̃o)−1
ij ,

(i,j = 1,2,3,4)

(80)
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The sum of (77) and (79) gives the total contribution
to the one-loop effective action generated from neutralino
and chargino integration Γ χ̃

eff [V ].
Finally, if we keep just the terms that contribute to

the two points functions we obtain,

Γ χ̃
eff [V ] =

i

2
Tr
(
k+A

(1)
+

)2
+

i

4
Tr
(
koA

(1)
o

)2

+iTr
(
koA

(1)
o+k+A

(1)
+o

)
+ O

(
V 3) . (81)

The total resulting effective action for the two-point
Green functions can be finally summarized by the follo-
wing expression,

Γeff [V ] = Γo[V ] + Γ f̃
eff [V ] + Γ χ̃

eff [V ]

= Γo[V ] + iTr
(
Gf̃A

(2)
f̃

)
− i

2
Tr
(
Gf̃A

(1)
f̃

)2

+
i

2
Tr
(
k+A

(1)
+

)2
+

i

4
Tr
(
koA

(1)
o

)2

+iTr
(
koA

(1)
o+k+A

(1)
+o

)
+ O

(
V 3) (82)

Diagrammatically, Γo gives the contribution to the free
two-point functions, the second and third terms give the
two types of one loop contributions with all kind of
sfermions in the loop, as in Fig. 1a, the fourth term gives
the one-loop contributions with charginos in the loop, the
fifth term is the corresponding contribution with neutrali-
nos in the loop and the last term gives the mixed one-loop
contributions with both charginos and neutralinos in the
loop. The corresponding diagrams to the last three terms
are shown in Fig. 1b.

5 Two-point functions for the electroweak
gauge bosons in the large SUSY masses limit

In this section we present the two point functions for the
electroweak gauge bosons to one loop and analize the limit
of large masses of the SUSY particles.

In order to get the explicit expressions for the two-
point functions one must work out the traces in the for-
mula (82). This involves lengthy algebraic standard ma-
nipulations that we do not present here for brevity. Basi-
cally one must substitute into (82) the operators A and
propagators G and K of (64, 68, 73, 78, 80), express the
one-loop integrals in momentum space of D dimensions,
compute all the appearing Dirac traces and Fourier trans-
form the result back to the position space. The traces also
involve to perform the sum in the corresponding matrix
indexes, the sum over the various types of sfermions and
the sum in color indexes in the case of squarks. The result
for the effective action is the following:

Γeff [V ] =
1
2

∫
dxdyAµ

xΓAA
µν (x, y)Aν

y

+
1
2

∫
dxdyZµ

x ΓZZ
µν (x, y)Zν

y

A A

~t1;2

~t1;2

A Z

~t1;2

~t1;2

Z Z

~t1;2
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Z Z

~t2
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W W
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W W
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W W
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A Z
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Z Z
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W W
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W W
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~�+1

W W
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~�+2

W W

~�03
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b

Fig. 1. a Feynman diagrams with scalars in the loops that
contribute to the two-point functions of the electroweak gauge
bosons. The diagrams shown for neutral gauge bosons are of
stop loops. Not shown are the similar diagrams of sbottom
loops. For the sleptons sector, ν, τ̃1 and τ̃2, analogous diagrams
are obtained. b Feynman diagrams with charginos and neu-
tralinos in the loops that dominate the two-point functions of
electroweak gauge bosons in the asymptotic limit of very large
ino masses

+
∫

dxdyAµ
xΓAZ

µν (x, y)Zν
y

+
∫

dxdyW+µ
x Γ+−

µν (x, y)W−ν
y + O(V 3) (83)

where Γµν(x, y) are the two-point functions in position
space. Their relation with the corresponding functions in
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momentum space is defined by,

(2π)4δ(k1 + k2)Γµν(k1) ≡
∫

dxdye−ik1x−ik2yΓµν(x, y) .

Finally, for the two-point functions in momentum
space we find,

ΓA A
µ ν (k) = −k2gµν +

(
1 − 1

ξA

)
kµkν (84)

+ ie2
∑

f̃

{
2
∑

a

Io

(
m̃2

fa

) (
Q̂2

f

)
aa

gµν

−
∑
ab

(
Q̂f

)
ab

(
Q̂f

)
ba

Iab
fµν

(k, m̃fa , m̃fb
)

}

+ 2ie2
2∑

i=1

{
T ii

µν

(
k, M̃+

i , M̃+
i

)
+ 2Îii

(
k, M̃+

i , M̃+
i

)
gµν

}

ΓZ Z
µ ν (k) = (m2

Z − k2)gµν +
(

1 − 1
ξZ

)
kµkν

+ i
g2

c2
W

∑
f̃

{
2
∑

a

Io

(
m̃2

fa

) (
Ĝ2

f

)
aa

gµν

−
∑
ab

(
Ĝf

)
ab

(
Ĝf

)
ba

Iab
fµν

(k, m̃fa
, m̃fb

)

}

+
i

2
g2

c2
W

4∑
i,j=1

{(
O′′ij

L O′′ji
L + O′′ij

R O′′ji
R

)
T ij

µν

(
k, M̃0

i , M̃0
j

)
+ 2

(
O′′ij

L O′′ji
R + O′′ij

R O′′ji
L

)
Îij
(
k, M̃0

i , M̃0
j

)
gµν

}
+ i

g2

c2
W

2∑
i,j=1

{(
O′ij

L O′ji
L + O′ij

R O′ji
R

)
T ij

µν

(
k, M̃+

i , M̃+
j

)
+ 2

(
O′ij

L O′ji
R + O′ij

R O′ji
L

)
Îij
(
k, M̃+

i , M̃+
j

)
gµν

}
(85)

ΓA Z
µ ν (k) = ΓZ A

µ ν (k)

=
ige

cW

∑
f̃

{
2
∑

a

I0
(
m̃2

fa

) (
Q̂f Ĝf

)
a a

gµ ν

−
∑
ab

(
Q̂f

)
a b

(
Ĝf

)
b a

Ia b
fµ ν

(k, m̃fa
, m̃fb

)

}

− ige

cW

2∑
i=1

(
O′i i

L + O′i i
R

)(
T i i

µ ν

(
k, M̃+

i , M̃+
i

)
+ 2Îii

(
k, M̃+

i , M̃+
i

)
gµ ν

)
(86)

Γ+ −
µ ν (k) = Γ− +

µ ν (k) =
(
m2

W − k2) gµ ν +
(

1 − 1
ξW

)
kµkν

+
ig2

2

∑
f̃

{∑
a

(Σf )a a I0
(
m̃2

fa

)
gµ ν

−
∑
a,b

(
Σt b

f

)
a b

(
Σt b

f

)
a b

Ia b
fµ ν

(k, m̃fa
, m̃fb

)


+ ig2

4∑
i=1

2∑
j=1

{(
Oi j

L O+ j i
L + Oi j

R O+ j i
R

)
T i j

µ ν

(
k, M̃0

i , M̃+
j

)
+ 2

(
Oi j

L O+ j i
R + Oi j

R O+ j i
L

)
Îij
(
k, M̃0

i , M̃+
j

)
gµ ν

}
(87)

Here the indexes a and b run over the four entries of the
sfermions column matrix in (30), and the sum in f̃ refers
to the sum over squarks and sleptons of each generation
as well as to the sum in color indexes for the squarks case.
The indexes i, j vary as i, j = 1, 2, 3, 4 if they refer to
neutralinos and as i, j = 1, 2 if they refer to charginos.

The one-loop integrals in (84) through (87) are defined
in dimensional regularization by,

I0
(
m̃2

fa

)
=
∫

dq̂
1[

q2 − m̃2
fa

] (88)

Ia b
fµ ν

(k, m̃fa
, m̃fb

) =
∫

dq̂
(2q + k)µ(2q + k)ν[

(k + q)2 − m̃2
fa

] [
q2 − m̃2

fb

]
(89)

Ii j(k, M̃i, M̃j) =
∫

dq̂
1[

q2 − M̃2
i

] [
(q + k)2 − M̃2

j

] (90)

T i j
µ ν = T j i

ν µ = 4Ii j
µ ν − 2gµ νgα βIi j

α β + 2
(
I ′i j

µ ν + I ′i j
ν µ

)
−2gµ νgα βI ′i j

α β (91)

Ii j
µ ν

(
k, M̃i, M̃j

)
=
∫

dq̂
qµqν[

q2 − M̃2
i

] [
(k + q)2 − M̃2

j

]
(92)

I ′i j
µ ν

(
k, M̃i, M̃j

)
=
∫

dq̂
qµkν[

q2 − M̃2
i

] [
(k + q)2 − M̃2

j

]
(93)

Îi j
(
k, M̃i, M̃j

)
=
∫

dq̂
M̃iM̃j[

q2 − M̃2
i

] [
(k + q)2 − M̃2

j

]
(94)

Here one extra integral Ii j has been included for com-
pleteness. In the above integrals M̃i should be understood
as M̃0

i if the index i (i=1,...,4) refers to neutralinos or as
M̃+

i if the index i (i=1,2) refers to charginos, and:∫
dq̂ ≡

∫
dDq

(2π)D
µ4−D

o .

Notice, that for the kind of loop integrals that we are
considering there should not be relevant difference in the
results with respect to other regularization methods, as
for instance, dimensional reduction. We have not done,
however, this check explicitly.
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The self-energies ΣX Y are defined from the two-point
functions as usual,

ΓX Y
µ ν (k) = Γ0

X Y
µ ν (k)

+ΣX Y (k) gµ ν + RX Y (k) kµkν (95)

where Γ0
X Y
µ ν are the two-point functions at tree level and

X, Y = A, Z, W±.
The transverse and longitudinal parts of the two-point

functions, ΣX Y
T and ΣX Y

L , are defined by,

ΓX Y
µ ν (k) = Γ0

X Y
µ ν (k)

+ΣX Y
T (k)

(
gµ ν − kµkν

k2

)
+ ΣX Y

L (k)
kµkν

k2

(96)

The expressions for the self energies ΣX Y (k) and the
RX Y (k) functions can be easily read from (84) through
(87). It is convenient to express them in terms of new
functions A′s, B′s, C ′s and D′s being defined as follows,

Ia b
fµ ν

(k, m̃fa
, m̃fb

) = Aa b
f (k, m̃fa

, m̃fb
) gµ ν

+Ba b
f (k, m̃fa

, m̃fb
) kµkν

T i j
µ ν

(
k, M̃i, M̃j

)
= Ci j

(
k, M̃i, M̃j

)
gµ ν

+Di j
(
k, M̃i, M̃j

)
kµkν . (97)

The results for ΣX Y (k) and RX Y (k) are collected in
Appendix A. This complete our computation of the effec-
tive action and the two-point functions for gauge bosons
which should be noticed are exact to one-loop.

Since we are interested in the large mass limit of the
SUSY particles we need to have at hand not just the exact
results of the above integrals but their asymptotic expres-
sions to be valid in that limit. We will present in the fol-
lowing the asymptotic results of the two-point functions
and the gauge bosons self-energies.

We have analized the integrals by means of the so-
called m-Theorem [23]. This theorem provides a powerful
technique to study the asymptotic behaviour of Feynman
integrals in the limit where some of the masses are large.
Notice that this is not trivial since some of these integrals
are divergent and the interchange of the integral with the
limit is not allowed. Thus, one should first compute the
integrals in dimensional regularization and at the end take
the large mass limit. Instead of this direct way it is also
possible to proceed as follows: First, one rearranges the
integrand through algebraic manipulations in order to de-
crease the ultraviolet divergence degree of some parts of
the integral up to separate the MS (or DR) regularized
integral into two parts, one of which is a divergent contri-
bution in 4 dimensions that can be evaluated exactly using
the standard techniques, and the other one is a convergent
part which satisfies the requirements demanded by the m-
Theorem and therefore, goes to zero in the infinite mass
limit. By means of this procedure we guarantee rigurously
the correct asymptotic behaviour of the integrals.

We give the details of the computation of the Feyn-
man integrals by means of the m-Theorem in Appendix
B. These integrals have been used to obtain the final re-
sults for the transverse and longitudinal parts, ΣX Y

T (k)
and ΣX Y

L (k), given in Appendix C.
Some comments on these results are in order:

– These asymptotic expressions are completely general
and depend just on the physical masses of the SUSY
particles and on the generic coefficients cq, sq, cl, sl,

Oj i
L,R, O′j i

L,R, O′′j i
L,R. Notice that they do not depend

on the particular mechanism that generates the SUSY
masses.

– We have done this computation, in addition, by dia-
grammatical methods and we have found the same re-
sults. It involves the evaluation of Feynman diagrams
with all kind of sparticles in the loops. We have shown
in Fig. 1 the various diagrams contributing to the two-
point functions ΓA A, ΓA Z , ΓZ Z and ΓW W . This dia-
grammatic computation provides a good check of our
previous results from functional methods, and at the
same time helps to illustrate which sparticle masses
must be compared to which in the large mass expan-
sion. Notice that the longitudinal components of the
two-point functions involving the photon field fulfil the
expected Slavnov-Taylor identities.

– In all these asymptotic expressions, the physical spar-
ticle masses are assumed to be much larger than the
external momenta. As we can see, from Fig. 1, the
masses that must be compared to each other are the
ones appering in the same one-loop diagram. Thus,
for instance, the self-energies ΣA A and ΣA Z , where
no mixed diagrams with different sfermions contribute,
do not need of any reference on the relative size of the
sfermion masses. ΣZ Z and ΣW W , on the contrary, do
require this comparison. In the case of ΣZ Z one needs
to compare squarks of the same charge, sleptons of the
same charge, charginos of the same charge and neu-
tralinos among them. No comparison among sfermions
of different generations is required since we have not
considered intergenerational mixing in this paper. In
the case of ΣW W one needs to compare, in each gen-
eration, the squarks of different charge, the sleptons
of different charge and the netralinos with the char-
ginos.The realistic and more interesting situation will
be when all the sparticles masses must be compared
at the same time and, obviously, the final result will
depend on the kind of SUSY hierarchy masses that
had been previously established. This will happen in
the observables where all the four self-energies do con-
tribute.

– As discussed in the introduction, decoupling of heavy
SUSY particles in the Appelquist-Carazzone Theorem
sense will occur if the virtual effects due to these par-
ticles on the effective low-energy SM action can be
absorbed into a redefinition of the SM parameters and
wave functions renormalization, or else they are sup-
pressed by inverse powers of the heavy SUSY parti-
cle masses. From our results in Appendix C it is clear
that we get indeed decoupling in the two point elec-
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troweak gauge boson functions. This can be easily un-
derstood due to the specific analytical form of our for-
mulae given generically by

ΣX Y (k) = ΣX Y
(0) + ΣX Y

(1) k2

and RX Y (k) = RX Y
(0) ,

where ΣX Y
(0) , ΣX Y

(1) and RX Y
(0) are functions of the

SUSY large masses but are k independent.
Equivalently, the transverse and longitudinal two-
point functions of Appendix C fulfil

ΣX Y
T = ΣX Y

T (0) + ΣX Y
T (1) k2

and (ΣX Y
L − ΣX Y

T ) ∝ k2,
which together are sufficient conditions to get decou-
pling.

6 Decoupling of sparticles in S, T and U

The radiative corrections from SUSY particles to the ob-
servables S, T and U have been analyzed exhaustively in
the literature [6,7], but neither their complete analytical
expressions in the large sparticle masses limit nor a general
and systematic study of sparticles decoupling have been
provided so far. We present in this section our results to
one loop for these analytical expressions of S, T and U
in a complete general form. Next we analyze under which
particular conditions the sparticles decoupling takes place
and finally we discuss how and why does it occur in the
very special case of the MSSM with soft SUSY breaking
terms.

The definition that we use for S, T and U are the usual
ones [25]:

S = −16π

e2 sW cW

[
sW cW Σ

′
AA(0) − sW sW Σ

′
ZZ(0)

+
(
c2

W − s2
W

)
Σ

′
AZ(0)

]
, (98)

T =
4π

e2

[
ΣW W (0)

m2
W

− ΣZZ(0)
m2

Z

− 2
sW

cW

ΣAZ(0)
m2

Z

]
, (99)

U =
16π

e2

[
Σ

′
W W (0) − cW

2Σ
′
ZZ(0) − sW

2Σ
′
AA(0)

−2sW cW Σ
′
AZ(0)

]
. (100)

The contribution to S, T and U are known to be finite
and well defined separately for each sparticle sector, so
that we can analyze them separately as well. As we have
already said we consider in this paper all the sparticle con-
tributions except that of the Higgs sector. Consequently,
we define:

SSUSY = Sq̃ + Sl̃ + Sχ̃ + SH

TSUSY = Tq̃ + Tl̃ + Tχ̃ + TH

USUSY = Uq̃ + Ul̃ + Uχ̃ + UH

(101)

By using the corresponding expressions for the self-ener-
gies given in Appendix C we obtain the following results
in the large masses limit, m2

q̃i
, m2

l̃j
, M̃+2

l , M̃o2

m � k2,
∀i, j, l, m and k being the external momentum.

6.1 Squarks
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∣∣ � ∣∣m̃2
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For the observables Tq̃ and Uq̃ we must consider to-
gether:

|m̃2
t1 − m̃2

t2 | � |m̃2
t1 + m̃2

t2 |,
|m̃2

b1 − m̃2
b2 | � |m̃2
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|m̃2
ti
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| � |m̃2
ti

+ m̃2
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| i, j = 1, 2
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∑
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Uq̃ =
∑
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where:

h
(
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1, m
2
2
) ≡ m2

1 log
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1
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6.2 Sleptons

If |m̃2
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− m̃2
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− 3c2
τs2

τ log
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∑
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∑
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where the last two equations have been obtained consi-
dering in addition:

|m̃2
ν − m̃2

τi
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ν + m̃2
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| i = 1, 2 .

6.3 Neutralinos and charginos
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M̃+2

2 + M̃o2

4

2µ2
o

+
1
2
(M̃o

3 − M̃o
4 )

2
log

M̃o2

3 + M̃o2

4

2µ2
o

}
, (110)

Uχ̃ =
4

3sW
2 log

M̃o2

2 + M̃+2

1

2M̃+2

1

+
1

3sW
2 log

[
(M̃o2

3 + M̃+2

2 )(M̃o2

4 + M̃+2

2 )
2M̃+2

2 (M̃o2

3 + M̃o2

4 )

]
, (111)

where the expressions (110) and (111) are valid consi-
dering together the above two conditions and also:

|M+2

i − Mo2

j | � |M+2

i + Mo2

j | , i = 1, 2 ; j = 1, 2, 3, 4 .

Here we have used the values of the coupling matrices
OL,R, O′

L,R, O′′
L,R corresponding to the large neutralinos

and charginos masses limit that are given in eqs (41). No-
tice that the above expressions are valid for both
µ ≥ 0 and µ < 0.

6.4 Discussion and comments

– The above expressions for S, T and U are general and
depend just on the physical sparticle masses and the
generic coefficients cf , sf (f = t, b, τ, ... and 0 ≤ cf , sf

≤ 1). The results for these parameters of the various
sectors are finite as they must be. The cancellation of
divergences occur between the t̃ and b̃ contributions of
each generation of squarks, between the ν̃ and τ̃ con-
tributions of each generation of sleptons and between
the charginos and neutralinos.

– The corrections to these formulae are always sup-
pressed by extra factors of the type[

m̃2
1 − m̃2

2

m̃2
1 + m̃2

2

]n

which are forced to be small under our assumption
|m̃2

1 − m̃2
2| � |m̃2

1 + m̃2
2| for the various types of spar-

ticles, and vanish in the infinite masses limit.
– Although the three parameters do not require the same

set of conditions on the sparticle masses, the physical
and realistic situation corresponds to have fixed all the
SUSY spectra at once, and therefore all these condi-
tions must hold together. Thus, by considering:

|m̃2
t1 − m̃2

t2 | � |m̃2
t1 + m̃2

t2 | ,

|m̃2
b1 − m̃2

b2 | � |m̃2
b1 + m̃2

b2 | and

|m̃2
ti

− m̃2
bj

| � |m̃2
ti

+ m̃2
bj

| , (i, j = 1, 2) ,

is equivalent to say that all the squarks of the same
generation have masses of similar large size. Similarly,
in the sleptons sector the conditions are:

|m̃2
ν − m̃2

τi
| � |m̃2

ν + m̃2
τi

| (i = 1, 2) and

|m̃2
τ1

− m̃2
τ2

| � |m̃2
τ1

− m̃2
τ2

| ,
and imply that the sleptons of the same generation
have also large masses of similar size. The conditions
on the charginos and the neutralinos sector are,

|M+2

1 − M+2

2 | � |M+2

1 + M+2

2 | ,
|M02

i − M02

j | � |M02

i + M02

j | ; (i, j = 1, 2, 3, 4) ,

|M+2

i − Mo2

j | � |M+2

i + Mo2

j | (i = 1, 2 ; j = 1, 2, 3, 4) ,

and imply analogously that all the large masses M+
i

and M0
j are comparable.

Let us now comment on how the decoupling occurs in
the various sectors.

Interestingly, in the squarks sector and by looking just
at the Sq̃ parameter, there is apparently no decoupling
since the dominant contribution goes as:

Sq̃ → −
∑

q̃

Nc

36π
log

m̃2
t1

m̃2
b1

,
(
m̃2

qi
� k2) (112)

which under the corresponding conditions |m̃2
t1 − m̃2

t2 | �
|m̃2

t1 +m̃2
t2 | and |m̃2

b1
−m̃2

b2
| � |m̃2

b1
+m̃2

b2
| does not vanish
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in the infinite m̃t1 and m̃b1 limit. However, when the three
parameters Sq̃, Tq̃ and Uq̃ are analized together and all
the conditions, including the third one, |m̃2

ti
− m̃2

bj
| �

|m̃2
ti

+ m̃2
bj

|, (i, j = 1, 2), are required together, then the
above dominant term in Sq̃ also vanishes in the infinite
squark masses limit as it was expected.

In order to show the decoupling explicitly one can go
a step further and make an expansion of Sq̃, Tq̃ and Uq̃

in powers of the proper dimensionless quantities which
accordingly must vanish in the considered infinite mass
limit. More explicitly, we define the proper expansion pa-
rameters in the (third generation) squarks sector as:

m̃2
t1 − m̃2

b1

m̃2
t1 + m̃2

b1

,
m̃2

b1
− m̃2

b2

m̃2
b1

+ m̃2
b2

,
m̃2

ti
− m̃2

bj

m̃2
ti

+ m̃2
bj

, (i, j = 1, 2) .

In terms of these parameters we get the following dom-
inant terms in the power expansions of Sq̃, Tq̃ and Uq̃:

Sq̃ → −
∑

q̃

Nc

18π

{(
m̃2

t1 − m̃2
b1

m̃2
t1 + m̃2

b1

)
+ s2

b

(
m̃2
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− m̃2

b2

m̃2
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+ m̃2
b2

)

−s2
t

(
m̃2

t1 − m̃2
t2

m̃2
t1 + m̃2

t2

)
− 3c2

t s
2
t

(
m̃2

t1 − m̃2
t2

m̃2
t1 + m̃2

t2

)2

−3c2
bs

2
b

(
m̃2

b1
− m̃2

b2

m̃2
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+ m̃2
b2

)2
+ O

(
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)3

,

(113)

Tq̃ →
∑

q̃

Nc

16π

1
s2

W m2
W

{
c2
t c

2
b(m̃

2
t1 − m̃2

b1)

(
m̃2

t1 − m̃2
b1

m̃2
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)

+c2
t s

2
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t2 − m̃2
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+O
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i − m̃2
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m̃2
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m̃2
i + m̃2
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)2
 , (114)

Uq̃ →
∑

q̃

Nc

12π
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t s
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t2

m̃2
t1 + m̃2
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+ s2
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2
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(
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b1
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+ m̃2
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+ O
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i − m̃2
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(115)

First, we see that in the limit of exact custodial SU(2)
V

symmetry, which corresponds to m̃t1 = m̃b1 ≡ m̃1, m̃t2 =
m̃b2 ≡ m̃2 and ct = cb ≡ c, st = sb ≡ s, both Tq̃ and Uq̃

vanish as it is expected, whereas Sq̃ goes as,

Sq̃ →
∑

q̃

Nc

3π
c2s2

(
m̃2

1 − m̃2
2

m̃2
1 + m̃2

2

)2

+ O

(
m̃2

1 − m̃2
2

m̃2
1 + m̃2

2

)4

(116)
Second, the above formulae show that the decoupling

indeed occurs in the three parameters since they go to zero
as some power of the parameters

[(
m̃2

i − m̃2
j

) /(
m̃2

i + m̃2
j

)]
which vanish in the infinite masses limit, m̃2

i , m̃
2
j → ∞,

with |m̃2
i − m̃2

j | � |m̃2
i + m̃2

j |. Besides, the decoupling is
much faster in Uq̃ than in Sq̃ and Tq̃. These results confirm
the numerical analyses performed in the literature and
agree with the qualitative behaviour discussed in [6–8].

However, we would like to emphasize once more that,
contrary to most of the studies in the literature (with the
exception of those on ∆ρ), our results for S, T and U
in this section are model independent and do not make
any reference on whether there is or not a common effec-
tive scale of supersymmetry breaking. We have neither as-
sumed here the common assumption for the MSSM masses
(see Sect. 3) that (m̃2

i −m̃2
j ) ∼ O(m2

Z) or ∼ O(m2
f). Gener-

ically speaking, these mass differences could well be larger
than the gauge boson or fermion masses and therefore the
rapidity of decoupling can vary from one SUSY break-
ing model to another. In particular by comparing Sq̃ and
Tq̃ in the non-custodial symmetric case, we see that their
dominant contributions go respectively as(

m̃2
i − m̃2

j

m̃2
i + m̃2

j

)
and

(
m̃2

i − m̃2
j

m2
W

)(
m̃2

i − m̃2
j

m̃2
i + m̃2

j

)
.

Therefore the later could be enhanced (suppressed) re-
spect to the first one if(

m̃2
i − m̃2

j

)� mW
2 ((

m̃2
i − m̃2

j

)� mW
2) .

In summary, from our previous analysis we can in-
fer with complete generality that the largest contribu-
tions from the squarks sector to Sq̃, Tq̃ and Uq̃ come from
the squarks pairs with the largest

[
(m̃2

i − m̃2
j )/(m̃2

i + m̃2
j )
]

values.
Parallel results for the sleptons sector can be obtained

by making the following replacements in the above for-
mulae: q̃ → l̃, Nc → 1, m̃t1 → m̃ν , m̃b1 → m̃τ1 , m̃b2 →
m̃τ2 , ct → 1, st → 0, cb → cτ and sb → sτ .
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With regard to the neutralinos and charginos sector
and by looking at (109 - 111) we first notice that, in the
large masses limit, the first chargino χ̃+

1 and the two first
neutralinos χ̃o

1 and χ̃o
2 decouple completely in the S pa-

rameter. These are precisely the chargino and neutralinos,
that in the large masses limit become predominantly gaug-
inos. The decoupling of the other eigenstates χ̃+

2 , χ̃o
3 and

χ̃o
4 in S is not evident at a first sight, since it depends

on the relative size of the χ̃+
2 mass with respect to the

masses of the neutralinos χ̃o
3 and χ̃o

4 . However, we have
seen in the second section, that in the large masses limit,
their corresponding squared mass eigenvalues approach to
a common value µ2 and, in consequence, the decoupling
in Sχ̃ does finally occur. Notice that this result is not
model dependent either, since this common value µ2 is
the unique squared mass parameter that is allowed by su-
persymmetry to be present at the Lagrangian level and
does not depend on the particular assumed SUSY break-
ing mechanism. Similarly, in the Tχ̃ and Uχ̃ parameters the
decoupling occurs exactly if the mass eigenvalues in the
large mass limit are considered, i.e, M̃+2

1 → M2
2 , M̃+2

2 →
µ2, M̃o2

1 → M2
1 , M̃o2

2 → M2
2 and M̃o2

3 = M̃o2

4 → µ2.
Notice that the discussion on how the decoupling oc-

curs in the particular case of the MSSM with soft SUSY
breaking terms is evident from the above analisis together
with the arguments given in Sect. 3. In conclusion, the
decoupling of sparticles in S, T and U in our asymptotic
limit takes place.

Finally, we discuss in the rest of this section the alter-
native possibility for the squarks sector of the MSSM:∣∣∣∣m̃2

t1 − m̃2
t2

m̃2
t1 + m̃2

t2

∣∣∣∣ ∼ O(1) ,

∣∣∣∣∣m̃2
b1

− m̃2
b2

m̃2
b1

+ m̃2
b2

∣∣∣∣∣ ∼ O(1) ,

which has been considered in detail in Sect. 3. As we have
explained there, this case implies that st and sb go to zero
in the asymptotic limit of MSUSY → ∞. From the exact
results of S, T and U parameters for the squarks sector
which can be taken, for instance, from (B.3), (B.6) and
(B.9) of [6], and by taking the limit st, sb → 0 we obtain:

S −→ − Nc

36π
log

m̃2
t1

m̃2
b1

,

T −→ Nc

16π

1
s2

W m2
W

g(m̃t1 , m̃b1) ,

U −→ Nc

12π
f(m̃t1 , m̃b1) , (117)

where,

g(m1, m2) ≡ m2
1 + m2

2 − 2
m2

1m
2
2

m2
1 − m2

2
log

m2
1

m2
2

,

f(m1, m2) ≡ −5
3

+
4m2

1m
2
2

(m2
1 − m2

2)2

+
(m2

1 + m2
2)(m

4
1 + m4

2 − 4m2
1m

2
2)

(m2
1 − m2

2)3
log

m2
1

m2
2

,

with g(m1, m2) ≈ 0 and f(m1, m2) ≈ 0 if m1 ≈ m2.

Notice that only squarks t̃1 and b̃1 remain in the above
expressions and they are precisely the squarks whose
masses in the large masses limit do always get close,
namely m̃2

t1 ≈ M2
Q̃

and m̃2
b1

≈ M2
Q̃
.

From the above expressions and by following the dis-
cussion presented in Sect. 3 we conclude that the three
parameters also vanish in this case as it was expected. It
completes our proof of decoupling of sparticles in these
observables.

7 Conclusions

Althought there are indications that the common assump-
tion of decoupling of heavy supersymmetric particles in
the MSSM leading to the SM as the remaining low energy
effective theory is correct a formal proof is still lacking.

This formal proof should be performed along the lines
stated in the Decoupling Theorem and by means of the
powerful techniques of the Effective Field Theories. The
computation of the effective action for the standard parti-
cles which results by integrating out all the heavy super-
symmetric particles will provide the answer to this ques-
tion. If the contribution from the heavy sparticles to the
effective action can be absorbed into redefinitions of the
Standard Model parameters or they are suppressed by in-
verse powers of the heavy sparticles masses, then the de-
coupling will be demonstrated.

In this paper we have computed the two-point func-
tions part of this effective action for the electroweak gauge
bosons, W±, Z and γ, that results by integrating out the
squarks, sleptons, charginos and neutralinos to one loop
level.

We have analyzed carefully the large SUSY masses
limit of these two-point Green functions and we have pre-
sented analytical results for them as well as for the self-
energies and the RX Y functions, which are valid in that
limit. These formulae are given in terms of the sparticle
masses and, therefore, they are general. Namely, they do
not depend on the particular choice for the soft-breaking
terms. In our opinion, it is more convenient for the anal-
ysis of the phenomenon of decoupling to use the physical
sparticle masses themselves, being the proper parameters,
rather than some other possible mass parameters of the
MSSM as, for instance, the µ-parameter or the soft-SUSY
breaking parameters.

The results for the two-point functions of the elec-
troweak gauge bosons indicate that there is indeed decou-
pling of squarks, sleptons, gauginos and neutralinos in the
limit where the sparticle masses are all large as compared
to the W± and Z masses and the external momentum.
In taking the large mass limit we have not assumed exact
universality of the masses but we have always worked un-
der the plausible assumption that the differences of their
squared masses are much smaller than their sums. As can
be seen from the formulae of Appendix C, all the remain-
ing contributions to the two point functions from spar-
ticles can be absorbed into redefinitions of the Standard
Model parameters mZ , mW and e and the gauge bosons
wave functions. The contributions which are not shown
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in our formulae all vanish in the asymptotic limit of very
large sparticle masses.

We have shown that the decoupling of sparticles also
takes place in the S, T and U parameters, and we have
presented explicit formulae for these parameters, which
illustrate analytically how this decoupling occurs.

Finally, we have explored to what extent the hypothe-
sis of generation of SUSY masses by soft-SUSY breaking
terms is relevant for decoupling and we have found instead
that the requirement of SU(3)c × SU(2)L × U(1)Y gauge
invariance of the explicit mass terms by itself is sufficient
to get it.
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Appendix A

In this appendix, we present the exact results of the self-
energies ΣX Y (k) and the RX Y (k) functions of (95) to one
loop.

Self-energies ΣX Y (k):

ΣA A(k) = ie2
∑

f̃
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2
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∑
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RX Y (k) functions:
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RW W (k) = − ig2

2

∑
f̃

∑
a,b

(
Σt b

f

)
ab

(
Σt b

f

)
ab

Ba b
f (k, m̃fa , m̃fb

)

+ig2
4∑

i=1

2∑
j=1

(
Oi j

L O+ j i
L + Oi j

R O+ j i
R

)
Di j

(
k, M̃0

i , M̃+
j

)
(A8)

The functions Aa b
f , Ba b

f , Ci j , Di j and Îi j have been
defined in (97) and (94) respectively.

Appendix B

In this appendix, we give the results of the one loop inte-
grals of ((88)–(94)) in the large masses limit and include
an example of the large mass techniques used in the cal-
culation.

We start by giving the results of the integrals. Here
and from now on,

∆ε =
2
ε

− γε + log(4π) , ε = 4 − D , (B1)

and µo is the usual mass scale of dimensional regulariza-
tion.

The integrals are given by:

I0(m̃2
fa) =

i

16π2

(
∆ε + 1 − log

m̃2
fa

µ2
o

)
m̃2

fa (B2)

This is a well known result in dimensional regularization
and is exact for all m̃2

fa.
• If m̃2

fa, m̃
2
fb � k2 and |m̃2

fa − m̃2
fb| � |m̃2

fa + m̃2
fb|:

Aab
f (k, m̃fa

, m̃fb
) =

i

16π2

{
(m̃2

fa + m̃2
fb)

×
(

∆ε + 1 − log
m̃2

fa + m̃2
fb

2µ2
o

)
− 1

3
k2
(

∆ε − log
m̃2

fa + m̃2
fb

2µ2
o

)}

Bab
f (k, m̃fa

, m̃fb
) =

i

16π2

1
3

(
∆ε − log

m̃2
fa + m̃2

fb

2µ2
o

)
(B3)

• If M̃2
i , M̃2

j � k2 and |M̃2
i − M̃2

j | � |M̃2
i + M̃2

j |:

Iij(k, M̃i, M̃j) =
i

16π2

(
∆ε − log

M̃2
i + M̃2

j

2µ2
o

)
,

Iij
µν(k, M̃i, M̃j) =

i

16π2

{
1
4
(M̃2

i + M̃2
j )gµν

×
(

∆ε + 1 − log
M̃2

i + M̃2
j

2µ2
o

)

−k2

12
gµν

(
∆ε − log

M̃2
i + M̃2

j

2µ2
o

)

+
1
3
kµkν

(
∆ε − log

M̃2
i + M̃2

j

2µ2
o

)}
,

I ′i j
µ ν(k, M̃i, M̃j) = − i

16π2

kµkν

2

(
∆ε − log

M̃2
i + M̃2

j

2µ2
o

)
,

Cij(k, M̃i, M̃j) =
i

16π2

{
−(M̃2

i + M̃2
j )

×
(

∆ε − log
M̃2

i + M̃2
j

2µ2
o

)

+
2
3
k2

(
∆ε − 1

2
− log

M̃2
i + M̃2

j

2µ2
o

)}
,

Dij(k, M̃i, M̃j) = − i

16π2

2
3

(
∆ε − log

M̃2
i + M̃2

j

2µ2
o

)
,

Îi j(k, M̃i, M̃j) =
i

16π2

1
2

{
1
3
k2

+(M̃2
i + M̃2

j )

(
∆ε − log

M̃2
i + M̃2

j

2µ2
o

)

− (M̃i − M̃j)2
(

∆ε − log
M̃2

i + M̃2
j

2µ2
o

)}
.

(B4)

The corrections to these formulas are suppressed by
inverse powers of (m̃2

fa + m̃2
fb) or (M̃2

i + M̃2
j ) respectively

and vanish in the infinite masses limit. For the calculation
of these integrals we have used the m-Theorem [23].

m-Theorem:

Consider the integral,

I(p, m) = mβ

∫
d4k

M(k)∏
i (l2i + m2

i )
ni

where li = k +
∑E

i=1 bijpj , being pj the external momenta
which lay in a bounded subdomain of <4, mi = 0 or m,
β is an arbitrary real number and M(k) is a monomial in
the components of k.
If:
the integral I(p, m) is both UV and IR convergent by
power counting at non-exceptional external momenta and
if

d − w < 0,

being d the mass dimension of I(p, m) and w the minimum
of zero and the infrared divergence degree of I(p, m) at
zero external momenta,
then:
I(p, m) goes to zero when m goes to infinity.
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As an example of the applications of this theorem let
us consider the following integral:

Iµν(k, m) =
∫

dq̂
qµqν

[(k + q)2 − m2][q2 − m2]
(B5)

The superficial degree of UV divergence of Iµ ν is 2
at D = 4. The first step is to rearrange algebraically the
integrand by using:

1
[(k + q)2 − m2]

=
1

[q2 − m2]
− 2qk + k2

[(k + q)2 − m2][q2 − m2]
(B6)

in order to lower the degree of UV divergence of the in-
tegral corresponding to the second term in (B6). This al-
gebraic rearrangement must be applied as many times as
necessary until obtaining a convergent integral which sat-
isfies the requirements of the m-Theorem.

By substituting (B6) in (B5), one gets:

Iµ ν(k, m) =
∫

dq̂
qµqν

[q2 − m2]2

−
∫

dq̂
(2qk)qµqν

[(k + q)2 − m2][q2 − m2]2

−
∫

dq̂
k2qµqν

[(k + q)2 − m2][q2 − m2]2

≡ Mµ ν − Nµ ν − k2Pµ ν (B7)

where Mµ ν can be evaluated exactly using the standard
techniques of dimensional regularization.

Let us concentrate in the last term Pµ ν that is loga-
rithmically divergent. By using again (B6) one gets,

Pµ ν =
∫

dq̂
qµqν

[q2 − m2]3

−
∫

dq̂
(2qk)qµqν

[(k + q)2 − m2][q2 − m2]3

−
∫

dq̂
k2qµqν

[(k + q)2 − m2][q2 − m2]3
(B8)

Now, the last two integrals are convergent at D = 4
and satisfy the requirements of the m-Theorem. Therefore,
these two terms go to zero when D → 4 and m → ∞. The
first term can be evaluated exactly using the standard
techniques obtaining:

Pµ ν = (
i

16π2 )
1
4
gµν

(
∆ε − log

m2

µ2
o

)
(B9)

Finally, by using the same procedure to compute Nµ ν ,
one gets:

Iµν(k, m) =
i

16π2

{
1
2
gµν

(
∆ε + 1 − log

m2

µ2
o

)
m2

+
(

1
3
kµkν − k2

12
gµν

)(
∆ε − log

m2

µ2
o

)}
(B10)

Another example that we want to show due to the
more intricate manipulations is Îi j of (94). In this case
we define two new parameters that do not appear in the
other integrals, m̄2 ≡ (M̃i − M̃j)2 and M̄2 ≡ (M̃i + M̃j)2.
In terms of these and the other more commom parameters,
M̂

2
and m̂2, Îi j can be written as:

Îi j =
1
4

∫
dq̂

M̄2 − m̄2

[q2 − M̂
2

+ m̂2][(k + q)2 − M̂
2 − m̂2]

(B11)
where M̂

2 ≡ 1
2 (M̃2

i + M̃2
j ) and m̂2 ≡ 1

2 (M̃2
i − M̃2

j ).
By using the relations between all parameters , m̄2, M̄2,

m̂2, M̂
2
, the above integral can be written as:

Îi j = I1 − 1
2
I2

being,

I1 =
∫

dq̂
M̂

2

[q2 − M̂
2

+ m̂2][(k + q)2 − M̂
2 − m̂2]

,

I2 =
∫

dq̂
m̄2

[q2 − M̂
2

+ m̂2][(k + q)2 − M̂
2 − m̂2]

.

(B12)

The first step is again to rearrange algebraically the
integrand as many times as necessary until obtaining a
convergent integral. The appropriate algebraic manipula-
tions in this case are:

1

[q2 − M̂
2 ± m̂2]

=
1

[q2 − M̂
2
]

∓ m̂2

[q2 − M̂
2 ± m̂2][q2 − M̂

2
]

(B13)

1

[(k + q)2 − M̂
2 − m̂2]

=
1

[q2 − M̂
2 − m̂2]

− 2qk + k2

[(k + q)2 − M̂
2 − m̂2][q2 − M̂

2 − m̂2]
(B14)

In particular for I2, by using (B13) twice, (B14) once and
by applying the m-Theorem to the convergent integrals
we get:

I2 =
i

16π2 m̄2

(
∆ε − log

M̂
2

µ2
o

)
(B15)

In order to compute I1, notice that it can be written
as:

I1 = −
∫

dq̂
1

[(k + q)2 − M̂
2 − m̂2]

+
∫

dq̂
q2 + m̂2

[q2 − M̂
2

+ m̂2][(k + q)2 − M̂
2 − m̂2]

= −I ′
1 + I ′′

1 . (B16)
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By doing the change of variables (k + q) → q and by
considering (B13) twice, the first integral of (B16) can be
written as:

I ′
1 =

∫
dq̂

1

[q2 − M̂
2
]
+
∫

dq̂
m̂2

[q2 − M̂
2
]
2

+
∫

dq̂
m̂4

[q2 − M̂
2
]
2
[q2 − M̂

2 − m̂2]
(B17)

where the first two terms can be again evaluated exactly
by using the standard techniques and the last one goes to
zero by virtue of the m-Theorem.

Similarly, to compute the second part, I ′′
1 , we consider

(B13) and (B14) as many times as necessary and apply
the m-Theorem. We obtain:

I1 =
i

16π2

{
M̂

2
(

∆ε − log
M̂

2

µ2
o

)
+

k2

6

}
. (B18)

Finally, by collecting all the results we get,

Îi j(k, M̃i, M̃j) =
i

16π2

1
2

{
1
3
k2

+(M̃2
i + M̃2

j )

(
∆ε − log

M̃2
i + M̃2

j

2µ2
o

)

− (M̃i − M̃j)2
(

∆ε − log
M̃2

i + M̃2
j

2µ2
o

)}
. (B19)

Appendix C

In this appendix we present the asymptotic results in the
large sparticle masses limit for the two-point functions
ΣXY

T and ΣXY
L of (96).

ΣAA

T (k) = ΣAA

T (k)q̃ + ΣAA

T (k)l̃ + ΣAA

T (k)χ̃ + ΣAA

T (k)H

ΣAA

L (k) = ΣAA

L (k)q̃ + ΣAA

L (k)l̃ + ΣAA

L (k)χ̃ + ΣAA

L (k)H

(C1)

• If m̃2
t1 , m̃

2
t2 , m̃

2
b1

, m̃2
b2

� k2:

ΣAA

T (k)q̃ = −Nc
e2

16π2

1
27

k2

×
∑

q̃

{
4
(

2∆ε − log
m̃2

t1

µ2
o

− log
m̃2

t2

µ2
o

)

+

(
2∆ε − log

m̃2
b1

µ2
o

− log
m̃2

b2

µ2
o

)}
, (C2)

• If m̃2
τ1

, m̃2
τ2

� k2:

ΣAA

T (k)l̃ = − e2

16π2

k2

3

∑
l̃

(
2∆ε − log

m̃2
τ1

µ2
o

− log
m̃2

τ2

µ2
o

)
,

(C3)

• If M̃+
1

2, M̃+
2

2 � k2:

ΣAA

T (k)χ̃ = − e2

16π2

4
3
k2

(
2∆ε − log

M̃+2

1

µ2
o

− log
M̃+2

2

µ2
o

)
,

(C4)

and for the longitudinal parts, we get:

ΣAA

L (k)q̃ = ΣAA

L (k)l̃ = ΣAA

L (k)χ̃ = 0 (C5)

ΣAZ

T (k) = ΣAZ

T (k)q̃ + ΣAZ

T (k)l̃ + ΣAZ

T (k)χ̃ + ΣAZ

T (k)H

ΣAZ

L (k) = ΣAZ

L (k)q̃ + ΣAZ

L (k)l̃ + ΣAZ

L (k)χ̃ + ΣAZ

L (k)H

(C6)

• If m̃2
t1 , m̃

2
t2 , m̃

2
b1

, m̃2
b2

� k2:

ΣAZ

T (k)q̃ = −Nc
e2

16π2

1
9 sW cW

k2

×
∑

q̃

{
2
(

1
2
c2
t − 2s2

W

)(
∆ε − log

m̃2
t1

µ2
o

)

+2
(

1
2
s2

t − 2s2
W

)(
∆ε − log

m̃2
t2

µ2
o

)
−
(

−1
2
c2
b +

1
3
s2

W

)(
∆ε − log

m̃2
b1

µ2
o

)

−
(

−1
2
s2

b +
1
3
s2

W

)(
∆ε − log

m̃2
b2

µ2
o

)}
, (C7)

• If m̃2
τ1

, m̃2
τ2

� k2:

ΣAZ

T (k)l̃ = − e2

16π2

1
3 sW cW

k2

×
∑

l̃

{(
1
2
c2
τ − s2

W

)(
∆ε − log

m̃2
τ1

µ2
o

)

+
(

1
2
s2

τ − s2
W

)(
∆ε − log

m̃2
τ2

µ2
o

)}
, (C8)

• If M̃+
1

2, M̃+
2

2 � k2:

ΣAZ

T (k)χ̃ =
e2

16π2

k2

sW cW

4
3

{(
sW

2 − 1
)(

∆ε − log
M̃+

1
2

µ2
o

)

+
(

sW
2 − 1

2

)(
∆ε − log

M̃+
2

2

µ2
o

)}
, (C9)

and for the longitudinal parts, we get:

ΣAZ

L (k)q̃ = ΣAZ

L (k)l̃ = ΣAZ

L (k)χ̃ = 0 (C10)

ΣZZ

T (k) = ΣZZ

T (k)q̃ + ΣZZ

T (k)l̃ + ΣZZ

T (k)χ̃ + ΣZZ

T (k)H

ΣZZ

L (k) = ΣZZ

L (k)q̃ + ΣZZ

L (k)l̃ + ΣZZ

L (k)χ̃ + ΣZZ

L (k)H

(C11)
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• If m̃2
t1 , m̃

2
t2 , m̃

2
b1

, m̃2
b2

� k2;
|m̃2

t1 − m̃2
t2 | � |m̃2

t1 + m̃2
t2 |;

|m̃2
b1

− m̃2
b2

| � |m̃2
b1

+ m̃2
b2

|:

ΣZZ

T (k)q̃ = Nc
e2

16π2

1
s2

W c2
W

×
∑

q̃

{
1
2
[
c2
t s

2
t h(m̃2

t1 , m̃
2
t2) + c2

bs
2
bh(m̃2

b1 , m̃
2
b2)
]

−1
3
k2

[(
c2
t

2
− 2s2

W

3

)2(
∆ε − log

m̃2
t1

µ2
o

)

+
(

s2
t

2
− 2s2

W

3

)2(
∆ε − log

m̃2
t2

µ2
o

)
+
(

−c2
b

2
+

s2
W

3

)2
(

∆ε − log
m̃2

b1

µ2
o

)

+
(

−s2
b

2
+

s2
W

3

)2
(

∆ε − log
m̃2

b2

µ2
o

)

+
1
2
s2

t c
2
t

(
∆ε − log

m̃2
t1 + m̃2

t2

2µ2
o

)
+

1
2
s2

bc
2
b

(
∆ε − log

m̃2
b1

+ m̃2
b2

2µ2
o

)]}
, (C12)

ΣZZ

L (k)q̃ = Nc
e2

16π2

1
2 s2

W c2
W

×
∑

q̃

{
c2
t s

2
t h(m̃2

t1 , m̃
2
t2) + c2

bs
2
bh(m̃2

b1 , m̃
2
b2)
}

,

(C13)

• If m̃2
ν , m̃2

τ1
, m̃2

τ2
� k2;

|m̃2
τ1

− m̃2
τ2

| � |m̃2
τ1

+ m̃2
τ2

|:

ΣZZ

T (k)l̃ = − e2

16π2

1
s2

W c2
W

∑
l̃

{
−1

2
c2
τs2

τh(m̃2
τ1

, m̃2
τ2

)

+
1
3
k2
[

1
4

(
∆ε − log

m̃2
ν

µ2
o

)
+
(−c2

τ

2
+ s2

W

)2(
∆ε − log

m̃2
τ1

µ2
o

)
+
(

−s2
τ

2
+ s2

W

)2(
∆ε − log

m̃2
τ2

µ2
o

)
+

1
2
s2

τ c2
τ

(
∆ε − log

m̃2
τ1

+ m̃2
τ2

2µ2
o

)]}
, (C14)

ΣZZ

L (k)l̃ =
e2

16π2

1
s2

W c2
W

1
2

∑
l̃

{
c2
τs2

τh(m̃2
τ1

, m̃2
τ2

)
}

,(C15)

• If M̃+
1,2

2, M̃o
j

2 � k2,

|M̃+
1

2 − M̃+
2

2| � |M̃+
1

2 + M̃+
2

2| ;
|M̃o

i
2 − M̃o

j
2| � |M̃o

i
2 + M̃o

j
2| , i, j = 1, 2, 3, 4:

ΣZZ

T (k)χ̃ = − e2

16π2

1
s2

W c2
W

{
−1

2
(M̃o

3 − M̃o
4 )

2

×
(

∆ε − log
M̃o

3
2 + M̃o

4
2

2µ2
o

)

+
1
3
k2

[
4
(
s2

W − 1
)2(

∆ε − log
M̃+

1
2

µ2
o

)

+4
(

s2
W − 1

2

)2
(

∆ε − log
M̃+

2
2

µ2
o

)

+

(
∆ε − log

M̃o
3

2 + M̃o
4

2

2µ2
o

)]}
, (C16)

ΣZZ

L (k)χ̃ =
e2

16π2

1
2s2

W c2
W

{
(M̃o

3 − M̃o
4 )

2

×
(

∆ε − log
M̃o

3
2 + M̃o

4
2

2µ2
o

)}
, (C17)

where h(m2
1, m

2
2) of (C12–C15) has been defined in (105).

ΣW W

T (k) = ΣW W

T (k)q̃ + ΣW W

T (k)l̃

+ΣW W

T (k)χ̃ + ΣW W

T (k)H

ΣW W

L (k) = ΣW W

L (k)q̃ + ΣW W

L (k)l̃

+ΣW W

L (k)χ̃ + ΣW W

L (k)H (C18)

• If m̃2
t1 , m̃

2
t2 , m̃

2
b1

, m̃2
b2

� k2 ;
|m̃2

ti
− m̃2

bj
| � |m̃2

ti
+ m̃2

bj
| , i, j = 1, 2 :

ΣW W

T (k)q̃ = Nc
e2

16π2

1
2 s2

W

∑
q̃

{[
c2
t c

2
bh(m̃2

t1 , m̃
2
b1)

+c2
t s

2
bh(m̃2

t1 , m̃
2
b2) + s2

t c
2
bh(m̃2

t2 , m̃
2
b1)

+ s2
t s

2
bh(m̃2

t2 , m̃
2
b2)
]

−1
3
k2

[
c2
t c

2
b

(
∆ε − log

m̃2
t1 + m̃2

b1

2µ2
o

)

+c2
t s

2
b

(
∆ε − log

m̃2
t1 + m̃2

b2

2µ2
o

)

+s2
t c

2
b

(
∆ε − log

m̃2
t2 + m̃2

b1

2µ2
o

)

+ s2
t s

2
b

(
∆ε − log

m̃2
t2 + m̃2

b2

2µ2
o

)]}
, (C19)

ΣW W

L (k)q̃ = Nc
e2

16π2

1
2 s2

W

∑
q̃

{
c2
t c

2
bh(m̃2

t1 , m̃
2
b1)

+c2
t s

2
bh(m̃2

t1 , m̃
2
b2) + s2

t c
2
bh(m̃2

t2 , m̃
2
b1)

+ s2
t s

2
bh(m̃2

t2 , m̃
2
b2)
}

, (C20)

• If m̃2
ν , m̃2

τ1
, m̃2

τ2
� k2 ,

|m̃2
ν − m̃2

τi
| � |m̃2

ν + m̃2
τi

| , i = 1, 2 :

ΣW W

T (k)l̃ =
e2

16π2

1
2 s2

W

∑
l̃

{
c2
τh(m̃2

ν , m̃2
τ1

)
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+s2
τh(m̃2

ν , m̃2
τ2

)

−1
3
k2
[
c2
τ

(
∆ε − log

m̃2
ν + m̃2

τ1

2µ2
o

)
+ s2

τ

(
∆ε − log

m̃2
ν + m̃2

τ2

2µ2
o

)]}
, (C21)

ΣW W

L (k)l̃ =
e2

16π2

1
2 s2

W

∑
l̃

{
c2
τh(m̃2

ν , m̃2
τ1

)

+ s2
τh(m̃2

ν , m̃2
τ2

)
}

, (C22)

• If M̃o
i

2, M̃+
j

2 � k2 ,

|M̃o
i

2 − M̃+
j

2| � |M̃o
i

2 + M̃+
j

2| , i = 1, 2, 3, 4 :

ΣW W

T (k)χ̃ = − e2

16π2

1
s2

W

{
−2 (M̃+

1 − M̃o
2 )2

×
(

∆ε − log
M̃+

1
2 + M̃o

2
2

2µ2
o

)

−1
2
(M̃+

2 − M̃o
3 )2
(

∆ε − log
M̃+

2
2 + M̃o

3
2

2µ2
o

)

−1
2
(M̃+

2 − M̃o
4 )2
(

∆ε − log
M̃+

2
2 + M̃o

4
2

2µ2
o

)

+
1
3
k2

[
4

(
∆ε − log

M̃+
1

2 + M̃o
2

2

2µ2
o

)

+

(
∆ε − log

M̃+
2

2 + M̃o
3

2

2µ2
o

)

+

(
∆ε − log

M̃+
2

2 + M̃o
4

2

2µ2
o

)]}
, (C23)

ΣW W

L (k)χ̃ =
e2

16π2

1
s2

W

{
2 (M̃+
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2 )2

×
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∆ε − log
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1
2 + M̃o

2
2

2µ2
o

)

+
1
2
(M̃+
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3 )2
(

∆ε − log
M̃+
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2 − M̃o
4 )2
(
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2

2 + M̃o
4
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)}
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We also include here the large masses limit of the fre-
quently appearing function h(m2

1, m
2
2) defined in (105):

• If |m2
1 − m2

2| � |m2
1 + m2

2|, m2
1;m

2
2 large,

h(m2
1, m

2
2) → m2

1 − m2
2

2

[
(m2

1 − m2
2)

(m2
1 + m2

2)
+ O

(
m2

1 − m2
2

m2
1 + m2

2

)2
]

(C25)
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Phys. B 427, 53 (1994); J.A. Coarasa et al., Eur. Phys. J.
C 2, 373 (1998); A. Djouadi et al., Eur. Phys. J. C 1, 149
(1998)

9. T. Inami, C.S. Lim, A. Yamada, Mod. Phys. Lett. A 7,
2789 (1992)

10. For a recent work on the large µ limit see, J.L. Diaz-Cruz,
Phys. Rev. D 56, 523 (1997)

11. H. Haber, Higgs bosons in the Minimal Supersymmetric
Model: The influence of radiative corrections. (UC, Santa
Cruz). SCIPP-92/31, Published in Perspectives on Higgs
Physics, World Scientific Publ., (1992) pp. 79-125

12. M. Carena, M. Quirós, C.E.M. Wagner, Nucl. Phys. B 461,
407 (1996)

13. H. Haber, Non-Minimal Higgs Sectors: The Decoupling
Limit and its Phenomenological Implications,. Talk pre-
sented at the Workshop on Physics from the Planck Scale
to the Electroweak Scale, (SUSY 94), Warsaw, Poland, 21-
24/Sept. 94, hep-ph/9501320; P. Ciafaloni and D. Espriu,
Phys. Rev. D 56, 1752 (1997); A. Djouadi et al., PM/96-39,
KA-TP-30-1996, hep-ph/9701342, (Z. Phys. C to appear)

14. T. Appelquist, J. Carazzone, Phys. Rev. D 11, 2856 (1975)
15. M. Bohm, H. Spiesberger, W. Hollik, Fortschr. Phys. 34,

11, 687, 751 (1986)
16. M. Veltman, Act. Phys. Pol. B 8, 475 (1977); Nucl. Phys.

B 123, 89 (1977); D.R.T. Jones, M. Veltman, Nucl. Phys.
B 19, 146 (1981); M. Chanowitz, M. Furman, I. Hinch-
liffe, Phys. Lett. B 78, 285 (1978); Nucl. Phys. B 153, 402
(1979)

17. G. Lin, H. Steger, Y. Yao Phys. Rev. D 49, 2414 (1994);
F. Feruglio, L. Maiani, A. Masiero, Nucl. Phys. B 387, 523
(1992)

18. T. Appelquist, C. Bernard, Phys. Rev. D 22, 200 (1980);
A.C. Longhitano, Nucl. Phys. B 188, 118 (1981); Phys.
Rev. D 22, 1166 (1980); M.J. Herrero, E.R. Morales Nucl.
Phys. B 418, 431 (1994); Nucl. Phys. B 437, 319 (1995);
D. Espriu, J. Matias, Phys. Lett. B 341, 332 (1995);



A. Dobado et al.: Decoupling of supersymmetric particles 339

S. Dittmaier, C. Grosse-Knetter, Phys. Rev. D 52, 7276
(1995); Nucl. Phys. B 459, 497 (1996)

19. For an introduction to the subject of integration of heavy
fields, computation of effective actions see, for instance,
A. Dobado et al., Effective Lagrangians for the Standard
Model, Springer-Verlag, (1997)

20. L. Ibañez, G.G. Ross, Phys. Lett. B 110, 227 (1982); K. In-
oue et al., Prog. Theor. Phys. 67, 1859 (1982); L. Alvarez-
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